

# SAN JUAN METRO AREA, PUERTO RICO

# COASTAL STORM RISK MANAGEMENT STUDY DRAFT INTEGRATED FEASIBILITY STUDY AND ENVIRONMENTAL ASSESSMENT

# JULY 2020

# APPENDIX C: ECONOMIC ANALYSIS

This page was intentionally left blank.

# Table of Contents

| 1 | Intro | oduct                                            | tion                                    | 6 |  |
|---|-------|--------------------------------------------------|-----------------------------------------|---|--|
|   | 1.1   | Back                                             | ، sground                               | 6 |  |
|   | 1.1.  | 1                                                | Purpose                                 | 6 |  |
|   | 1.1.2 | 2                                                | Authority                               | 6 |  |
|   | 1.1.3 | 3                                                | Location                                | 6 |  |
|   | 1.2   | Prob                                             | plems and Opportunities                 |   |  |
|   | 1.2.  | 1                                                | Reach 1 – West San Juan Bay             | 7 |  |
|   | 1.2.2 | 2                                                | Reach 3 – Condado Lagoon                | 8 |  |
|   | 1.3   |                                                  | ectives                                 |   |  |
|   | 1.4   | Con                                              | straints                                | 8 |  |
|   | 1.5   | Perf                                             | ormance Metrics, Data Sources, & Models | 9 |  |
|   | 1.5.3 |                                                  | Models                                  |   |  |
| 2 | Inve  | entory                                           | y of Existing Conditions1               | 0 |  |
|   | 2.1   | Stru                                             | cture Inventory1                        | 0 |  |
|   | 2.2   | Dep                                              | th Damage Functions1                    | 1 |  |
|   | 2.3   | .3 Structure Inventory Profile by Planning Reach |                                         |   |  |
|   | 2.3.  | 1                                                | Reach 1 – West San Juan Bay1            | 5 |  |
|   | 2.3.2 | 2                                                | Reach 2 – East San Juan Bay1            | 8 |  |
|   | 2.3.3 |                                                  | Reach 3 – Condado Lagoon1               |   |  |
|   | 2.4   | Stru                                             | cture Inventory Uncertainties           | 0 |  |
| 3 | Fore  | ecast                                            | of Conditions (FWOP)2                   | 0 |  |
|   | 3.1   | FWC                                              | DP Condition Assumptions                | 0 |  |
|   | 3.1.  | 1                                                | Life Loss Assumptions                   | 0 |  |
|   | 3.2   | FWC                                              | DP Condition Damages                    | 2 |  |
|   | 3.2.3 | 1                                                | FWOP: Overall Damage Statistics         | 2 |  |
|   | 3.2.2 | 2                                                | FWOP: Damages by Occupancy              | 5 |  |
|   | 3.2.3 | 3                                                | FWOP Damages over Space2                | 6 |  |
|   | 3.2.4 | 4                                                | FWOP: Damages over Time                 | 0 |  |
|   | 3.2.  | 5                                                | FWOP: Damages by Flood Water Level      | 1 |  |
|   | 3.2.  | 6                                                | FWOP: Life Loss                         | 3 |  |
| 4 | Forr  | nulat                                            | e Evaluate & Compare (FWP)3             | 4 |  |
|   | 4.1   | Alte                                             | rnatives                                | 4 |  |

| <br>4.2 Evaluation and Comparison                            | 4.2  |
|--------------------------------------------------------------|------|
| <br>4.2.1 Comparison of Potential Tentatively Selected Plans | 4.2  |
| <br>The Selected Plan                                        | 5 Th |

# Tables

| Table 2-1: Damage Element Occupancy Types                                     | 11 |
|-------------------------------------------------------------------------------|----|
| Table 2-2:NACCS Damage Functions Considered                                   | 12 |
| Table 2-3: IWR Nonresidential Flood Depth Damage Functions                    | 13 |
| Table 2-4: West San Juan Bay future without-project damages by Occupancy Type | 16 |
| Table 2-5: East San Juan Bay future without-project damages by Occupancy Type | 18 |
| Table 2-6: Condado Lagoon future without-project damages by Occupancy Type    | 19 |
| Table 3-1: Future without-project condition damages                           | 23 |
| Table 3-2: West San Juan Bay future without-project condition damages         | 24 |
| Table 3-3: East San Juan Bay future without-project condition damages         | 24 |
| Table 3-4: Condado Lagoon future without-project condition damages            | 24 |
| Table 3-5: Distribution of FWOP Damages by Category and Type                  | 25 |
| Table 3-6: FWOP present value damages by Category and Model Area              | 26 |

# Figures

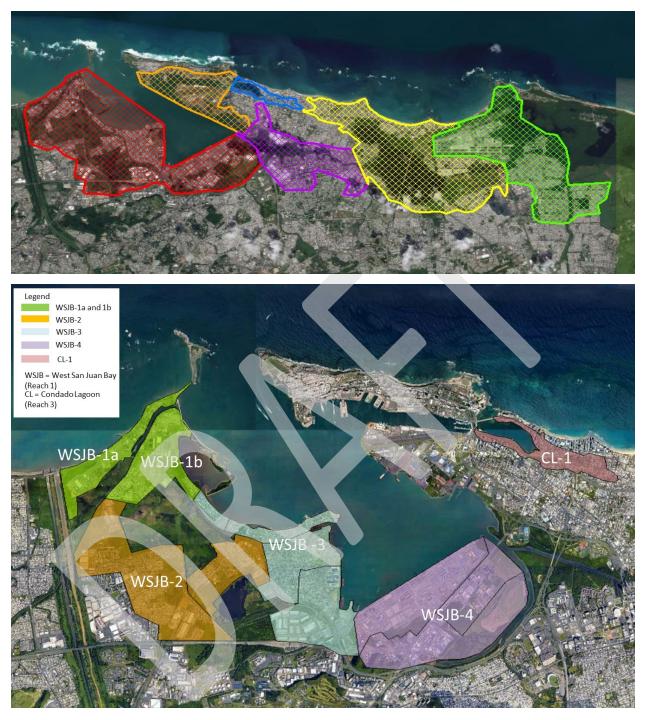
| Figure 2-2: Existing content and structure values for West San Juan Bay sub-reaches | 17 |
|-------------------------------------------------------------------------------------|----|
| Figure 2-1: Existing content and structure values for East San Juan Bay sub-reaches | 19 |
| Figure 3-1: Tsunami evacuation map for San Juan, Puerto Rico                        | 21 |
| Figure 3-2: Mean PV Damages by Model Area                                           | 23 |
| Figure 3-3: West San Juan Bay 1 Damage Elements                                     | 27 |
| Figure 3-4: West San Juan Bay 2 Damage Elements                                     | 27 |
| Figure 3-5: West San Juan Bay 3 Damage Elements                                     | 28 |
| Figure 3-6: West San Juan Bay 4 Damage Elements                                     | 28 |
| Figure 3-7: East San Juan Bay Damage Elements                                       | 29 |
| Figure 3-8: Condado Lagoon Damage Elements                                          | 29 |
| Figure 3-9: West San Juan Bay Damages over Time                                     | 30 |
| Figure 3-10: East San Juan Bay Damages over Time                                    | 30 |
| Figure 3-11: Condado Lagoon Damages over Time                                       | 31 |
| Figure 3-12: West San Juan Bay Damages by Maximum Storm Stage                       | 31 |
| Figure 3-13: East San Juan Bay Damages by Maximum Storm Stage                       | 32 |
| Figure 3-14: Condado Lagoon Damages by Maximum Storm Stage                          | 33 |

# 1 Introduction

# 1.1 Background

#### 1.1.1 Purpose

The U.S. Army Corps of Engineers (USACE) study is an interim response to the study authority to determine Federal interest in a plan to reduce damages to infrastructure as a result of flooding from coastal storms and hurricanes along the back bay areas in the municipality of San Juan and adjacent municipality communities. More specifically, this study will assess back bay flooding risks due to storm surge, which also includes wave contributions and tidal influences, as well as sea level change under the Coastal Storm Risk Management (CSRM) mission. The study develops and evaluates CSRM alternatives for the San Juan Metropolitan Area, which for this study includes the municipalities of San Juan, Cataño, and Guaynabo. The alternatives described in this report are formulated to reduce risk to residents, industries, businesses and infrastructures which are critical to the nation's economy. The long-term strategy for resilience in the San Juan Metropolitan Area is a layered solution that includes elements executed by the non-Federal sponsor, other federal agencies, and/or non-governmental organizations in addition to the recommendations for implementation by the USACE study. The study seeks to not only reduce coastal storm risk from storm surge, but also to build on resilience by implementing strategic approaches that address identified stresses and potential shocks such as nuisance flooding risk, major storms and the impact on residents and economic activity.


## 1.1.2 Authority

This report is an interim response to the study authority. Authority for the San Juan Metro coastal storm risk management (CSRM) study is granted under Section 201 of the Flood Control Act of 1970, Public Law 91-611 which authorizes the Secretary of the Army, acting through the Chief of Engineers, to prepare plans for the development, utilization and conservation of water and related land resources of drainage basins and coastal areas in the Commonwealth of Puerto Rico. Study funds for this study were appropriated under Bipartisan Budget Act of 2018 115-123.

## 1.1.3 Location

Puerto Rico is the smallest of the Greater Antilles and is located in the Northeast of the Caribbean shield made up of the Greater Antilles and Minor Antilles. In addition, it is in the 18.5° N Parallel of the Tropic of Cancer at latitude 65° W. this position makes it extremely vulnerable to hurricanes due to the warmer temperatures of the waters in those zones.

The study focuses on the areas most likely to experience damages from storm surge within the San Juan Metro Area, and which results in West San Juan Bay (WSJB) reach and Condado Lagoon (CL) reach. The combined study area encompasses approximately 9.5 square miles and contains approximately 22 structures identified as critical infrastructure, approximately 14 schools and major hurricane and tsunami evacuation routes.



## 1.2 Problems and Opportunities

Problems and opportunities have been identified by the Project Delivery Team (PDT) in several ways, including coordination with the sponsor, municipalities, as well as scoping letter comments received from local residents and stakeholders, GIS data, reports from other agencies and USACE reports.

## 1.2.1 Reach 1 – West San Juan Bay

• Storm surge inundation from hurricanes and storms causes damage to structures, vehicles, and critical infrastructure, including Tsunami and Hurricane evacuation route, PR-165.

- Storm surge inundation from hurricanes and storms results in inaccessibility to critical infrastructure, including evacuation routes before, during and after storm events.
- Storm surge inundation from hurricanes and storms can cause standing water and results in public safety risks, including health risks from waterborne diseases.
- Wave attack during hurricanes and storms causes erosion and damages around waterfront areas in Cataño, in the WSJB-3 planning reach.
- Sea level rise will cause increased risk of storm surge flooding.
- Note that for all problems described above, the source of inundation is from the San Juan Bay.

#### 1.2.2 Reach 3 – Condado Lagoon

- Storm surge inundation from hurricanes and storms causes damage to structures, vehicles, and critical infrastructure, including Tsunami and Hurricane evacuation route, PR-24.
- Storm surge inundation from hurricanes and storms results in inaccessibility to critical infrastructure, including evacuation routes before, during and after storm events.
- Storm surge inundation from hurricanes and storms can cause standing water and results in public safety risks, including health risks from waterborne diseases.
- Sea level rise will cause increased risk of storm surge flooding.
- "Sunny day flooding" (frequent tidal flooding events) results in damages, public safety concerns, health risks, and accessibility concerns as described above.
- Note that for all problems described above, the source of inundation is from the Condado Lagoon.

Opportunities are positive conditions in the study area that may result from implementation of a Federal project.

## 1.3 Objectives

The Federal objective, as stated in the P&G, is to contribute to national economic development (NED) consistent with protecting the nation's environment, pursuant to national environmental statutes, applicable executive orders, and other Federal planning requirements. Contributions to NED are increases in the net value of the national output of goods and services, expressed in monetary units. Contributions to NED are the direct net economic benefits that accrue in the study area and the rest of the nation.

The Federal objective is to maximize net benefits to the nation, and as such, it does not seek to identify specific targets within objectives. For example, targeting a pre-defined storm frequency (100-year storm) relative to the storm damage reduction objective would be inappropriate. Rather, the planning process includes formulation of alternative plans to maximize benefits relative to costs. The Federal objective to maximize net benefits would supersede any project-specific target output.

The overarching goal of this study is to formulate alternatives for coastal study risk management to determine if Federal participation in reduction of the damage to infrastructure caused by storm surge within the study area is warranted and economically justified.

## 1.4 Constraints

A constraint is a restriction that limits the extent of the planning process; it is a statement of effects that alternative plans should avoid. Constraints are designed to avoid undesirable changes between without and with-project future conditions. The planning constraint for this study area is to avoid conflict with Federal regulations, as stated in Federal law, USACE regulations, and executive orders.

Local and state laws do not constrain NED formulation. However, they may be considered in the selection of a Locally Preferred Plan (LPP).

# 1.5 Performance Metrics, Data Sources, & Models

# 1.5.1 Models

The G2CRM is a desktop computer model that implements an object-oriented probabilistic life cycle analysis (PLCA) model using event-driven Monte Carlo simulation (MCS). This allows for incorporation of time-dependent and stochastic event-dependent behaviors such as sea level change, tide, and structure raising and removal. The model is based upon driving forces (storms) that affect a coastal region (study area). The study area is comprised of individual sub-areas of different types that may interact hydraulically and may be defended by coastal defense elements that serve to shield the areas and the assets they contain from storm damage. The model is scalable in that different levels of detail can be used for the data that drives the model, with lower levels of detail at early stages of model application (fewer storms, aggregated assets) and more refined representations used as new data become available.

Within the specific terminology of G2CRM, the important modeled components are:

- Driving forces storm hydrographs (surge and waves) at locations, as generated externally from high fidelity storm surge and nearshore wave models such as ADCIRC and STWAVE;
- Modeled areas (MAs) areas of various types (coastal upland, unprotected area) that comprise the overall study area. The water level in the modeled area is used to determine consequences to the assets contained within the area.
- Protective system elements (PSEs) the infrastructure that defines the coastal boundary be it a coastal defense system that protects the modeled areas from flooding (levees, pumps, closure structures, etc.), or a locally developed coastal boundary comprised of bulkheads and/or hardened shoreline.
- Assets spatially located entities that can be affected by storms. Damage to structure and contents is determined using damage functions. For structures, population data at individual structures allows for characterization of loss of life for storm events.

Within each general component category (e.g. PSEs, MAs, Assets), different element types exist with data needs specific to that type. Due to the object-oriented paradigm of the model, it is relatively simple to add new elements and change the characterization and behavior of existing model elements, for example to add a more sophisticated approach to rebuilding for assets.

The model deals with the engineering and economic interactions of these elements as storms occur during the life cycle, areas are inundated, protective systems fail, and assets are damaged and lives lost. A simplified representation of hydraulics and water flow is used. Modeled areas currently include unprotected areas and coastal uplands defended by a seawall or bulkhead. Protective system elements are limited to bulkheads/seawalls.

# 2 Inventory of Existing Conditions

## 2.1 Structure Inventory

The San Juan Metro structure developed based on geospatial data provided by SAJ GIS personnel. Data sources used to assemble the structure inventory include the following:

 Puerto Rico US Geological Survey (USGS) 2015 1m x 1m LiDAR Digital Elevation Model (DEM) & Digital Surface Model (DSM);

Humanitarian OpenStreetMap Team (HOTOSM) Puerto Rico Buildings (OpenStreetMap Export) The building polygons were horizontally projected and aligned base on the DSM and aerial images. Some polygons were manually digitized due to incomplete data. The digital terrain model was subtracted from the digital surface model to estimate building heights. The number of floors per building was obtained using zonal statistics and verified by comparing a sample of 30 polygons per area of interest to Google Maps aerial im ages. Google Maps was also used to assign the occupancy type for each building. Building square footage was determined using the building polygons and a sample of 30 polygons were randomly selected in order to determine the error in the estimate. The DTM was also used along with the building footprints to determine the building grade elevation.

The aforementioned spatial data was compiled into a format suitable for use with G2CRM. Buildings were organized into the occupancy type categories listed in Table 2-1. Asset general occupancy groupings are as follows:

- COM Commercial structures & non-residential buildings
- COMM Community centers, churches
- GOV Publically owned buildings
- HOSP Hospitals, clinics, & medical offices
- MFR Multi-family residential structures
- SFR Single-family residential structures
- ES Empty Structures (Vacant buildings)
- AUTOS Vehicles
- SHED, TRAILER, GAZEBO Indicative of non-engineered assets such as gazebos, and storage buildings.

A suffix was concatenated to the occupancy code to denote the number of floor range and construction profile. The following bulleted list shows the number of stories along with the construction assumptions:

- SS Single Story masonry, slab on grade buildings
- MS Multistory (2 to 4 stories) Masonry slab on grade assets
- MR Midrise (5 to 9 stories) reinforced masonry slab on grade buildings
- HR High-rise (10 stories or greater) reinforced masonry high rise buildings with basements / subterranean value.

Based on site visits, accounts from SAS real estate personnel, and consultations with locals most asset 1<sup>st</sup> floor elevations tend to be within 8" of the grade. Structure values were developed by SAS real estate personnel and are based on a sample of the compiled asset data. All structure value is comprised of depreciated replacement cost represented in FY 2020 price levels.

Vehicles were represented as geospatial point shape features superimposed on assets with SFR and MFR occupancy categorizations. Vehicle values were obtained using the National Structure Inventory (NSI) version 1.0 for the San Juan Puerto Rico and are based on the median vehicle value for a single family residence. It is assumed that just around 27% of vehicles receive damages during storm events.

| Occupancy Type | Occupancy Type Description                               |
|----------------|----------------------------------------------------------|
| COM-HR         | Commercial Bldg High Rise                                |
| COMM-MR        | Community Center Bldg Mid-Rise                           |
| COMM-MS        | Community Center Bldg Multi-Story                        |
| COM-MR         | Commercial Bldg Mid-Rise                                 |
| COM-MS         | Commercial Bldg Multi-Story                              |
| COMM-SS        | Community Center Bldg Single Story                       |
| COM-SS         | Commercial Bldg Single Story                             |
| ES-MS          | Vacant Multi-Story                                       |
| ES-SS          | Vacant Single Story                                      |
| GAZEBO-SS      | Gazebo Single Story                                      |
| GOV-HR         | Government Bldg High Rise                                |
| GOV-MR         | Government Bldg Mid-Rise                                 |
| GOV-MS         | Government Bldg Multi-Story                              |
| GOV-SS         | Government Bldg Single Story                             |
| HOSP-MR        | Hospital Medical Bldg Mid-Rise                           |
| HOSP-MS        | Hospital Medical Bldg Multi-Story                        |
| HOSP-SS        | Hospital Medical Bldg Single Story                       |
| MFR-HR         | Multi-Family Residence High Rise                         |
| MFR-MR         | Multi-Family Residence Mid-Rise                          |
| MFR-MS         | Multi-Family Residence Multi-Story                       |
| MFR-SS         | Multi-Family Residence Single Story                      |
| SFR-MS         | Single Family Residence Multi-Story                      |
| SFR-SS         | Single Family Residence Single Story                     |
| SHED-MS        | Sheds Multi-Story                                        |
| SHED-SS        | Sheds Single Story                                       |
| TRAILERS-MS    | Trailers Multi-Story                                     |
| TRAILERS-SS    | Trailers Single Story                                    |
| GAZEBO-MS      | Gazebo Multi-Story                                       |
| AUTO-MFR-HR    | Vehicles for Multi-Family Residence High Rises           |
| AUTO-MFR-MR    | Vehicles for Multi-Family Residence Mid-Rises            |
| AUTO-MFR-MS    | Vehicles for Multi-Family Residence Multi-Story Assets   |
| AUTO-MFR-SS    | Vehicles for Multi-Family Residence Single Story Assets  |
| AUTO-SFR-MS    | Vehicles for Single Family Residence Multi-Story Assets  |
| AUTO-SFR-SS    | Vehicles for Single Family Residence Single Story Assets |

#### Table 2-1: Damage Element Occupancy Types

# 2.2 Depth Damage Functions

Occupancy and number of stories were the chief determinants in assigning structure damage functions while the occupancy of the 1<sup>st</sup> livable level closest to the grade was the determining factor for content damage function assignments. The reason for this is that a number of assets have mixed use occupancy designations in densely populated urban environments.

NACCS and IWR non-residential depth damage functions were used to describe flood damages to buildings for the San Juan Metro Study. Depth damage function for vehicles was based on the EGM 09-04 Generic Depth Damage Relationships for Vehicles. Table 2-2 and Table 2-3 provides detail on the NACCS and IWR damage functions respectively. Table 4 and Table 5 show the distribution of damages and content to structure value ratios (CSVR) by occupancy type.

| Inundation Damage        | Table 2-2:NACCS Damag       |                                               | Structure<br>Damage | Content<br>Damage   |  |
|--------------------------|-----------------------------|-----------------------------------------------|---------------------|---------------------|--|
| Function                 | General Occupancy           | Description                                   | Function<br>Table # | Function<br>Table # |  |
| NACCS-Prototype-1A-<br>1 | Residential                 | Apartments :<br>One-Story: No<br>Basement     | 12                  | 13                  |  |
| NACCS-Prototype-1A-<br>3 | Residential                 | Apartments :<br>Three-Stories: No<br>Basement | 22                  | 23                  |  |
| NACCS-Prototype-2        | Commercial                  | Commercial-<br>Engineered                     | 25                  | 26,27               |  |
| NACCS-Prototype-3        | Commercial                  | Commercial-Non-<br>Engineered                 | 35                  | 36,37               |  |
| NACCS-Prototype-4A       | Residential /<br>Commercial | Urban High Rise                               | 46                  | 47                  |  |
| NACCS-Prototype-4B       | Residential /<br>Commercial | Beach High Rise                               | 49                  | 50                  |  |
| NACCS-Prototype-5A       | Residential                 | Single Story<br>Residence: No<br>Basement     | 56                  | 57                  |  |
| NACCS-Prototype-5B       | Residential                 | Two Story<br>Residence: No<br>Basement        | 67                  | 68                  |  |
| NACCS-Prototype-6A       | Residential                 | Single Story<br>Residence:<br>Basement        | 75                  | 76                  |  |
| NACCS-Prototype-6B       | Residential                 | Two Story<br>Residence:<br>Basement           | 83                  | 84                  |  |
| NACCS-Prototype-7A       | Residential                 | Building on Open<br>Pile Foundation           | 91                  | 92                  |  |
| NACCS-Prototype-7B       | Residential                 | Building on<br>Enclosed Pile<br>Foundation    | 99                  | 100                 |  |
|                          |                             |                                               |                     |                     |  |

| Inundation<br>Damage Function | General<br>Occupancy | Description                                   | Structure<br>Damage<br>Function<br>Tables | Content<br>Damage<br>Function<br>Tables | Source                        |
|-------------------------------|----------------------|-----------------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------|
| IWR-Prototype-1               | Public               | Apartment Buildings                           | D-1                                       | D-43                                    |                               |
| IWR-Prototype-2               | Commercial           | Large Grocery Store, One-Story                | D-2                                       | D-44                                    |                               |
| IWR-Prototype-3               | Commercial           | Convenience Store; One-Story                  | D-3                                       | D-45                                    |                               |
| IWR-Prototype-4               | Commercial           | Hotel/Motel: One-Story                        | D-4                                       | D-46                                    |                               |
| IWR-Prototype-5               | Commercial           | Medical Office: One-Story                     | D-5                                       | D-47                                    |                               |
| IWR-Prototype-6               | Commercial           | Hospital: One-Story                           | D-6                                       | D-48                                    |                               |
| IWR-Prototype-7               | Commercial           | Office Building: One-Story                    | D-7                                       | D-49                                    |                               |
| IWR-Prototype-8               | Commercial           | Fast Food Restaurant: One-Story               | D-8                                       | D-50                                    |                               |
| IWR-Prototype-9               | Commercial           | Non-Fast Food Restaurant: One-Story           | D-9                                       | D-51                                    | IWR:                          |
| IWR-Prototype-10              | Commercial           | Electronic Retail Store: One-Story            | D-10                                      | D-52                                    | Nonresidential<br>Flood Depth |
| IWR-Prototype-11              | Commercial           | Furniture Retail Store: One-Story             | D-11                                      | D-53                                    | Damage                        |
| IWR-Prototype-12              | Commercial           | Clothing Retail Store: One-Story              | D-12                                      | D-54                                    | Functions                     |
| IWR-Prototype-13              | Commercial           | Service Station: One-Story                    | D-13                                      | D-55                                    | Derived from                  |
| IWR-Prototype-14              | Industrial           | Industrial Light Manufacturing: One-<br>Story | D-14                                      | D-56                                    | Expert<br>Elicitation         |
|                               |                      | Warehouse, Non-Refrigerated: One              |                                           |                                         |                               |
| IWR-Prototype-15              | Industrial           | Story                                         | D-15                                      | D-57                                    |                               |
| IWR-Prototype-16              | Industrial           | Warehouse, Refrigerated: One-Story            | D-16                                      | D-58                                    |                               |
| IWR-Prototype-17              | Public               | Correctional Facility: One Story              | D-17                                      | D-59                                    |                               |
| IWR-Prototype-18              | Public               | Protective Services: One Story                | D-18                                      | D-60                                    |                               |
| IWR-Prototype-19              | Community            | Recreational Facility: One-Story              | D-19                                      | D-61                                    |                               |
| IWR-Prototype-20              | Community            | Religious Facility: One-Story                 | D-20                                      | D-62                                    |                               |
| IWR-Prototype-21              | Educational          | School, One Story                             | D-21                                      | D-63                                    |                               |

Table 2-3: IWR Nonresidential Flood Depth Damage Functions

| Occupancy | Damage<br>Category | Description                           | Structure                | Contents                              | CSVR |
|-----------|--------------------|---------------------------------------|--------------------------|---------------------------------------|------|
| COM-HR    | СОМ                | Commercial Bldg<br>High Rise          | NACCS-Prototype-<br>4A   | NACCS-Prototype-4A                    | 0.38 |
| COMM-MR   | СОММ               | Community Center<br>Bldg Mid-Rise     | NACCS-Prototype-<br>4A   | NACCS-Prototype-4A                    | 0.13 |
| COMM-MS   | СОММ               | Community Center<br>Bldg Multi-Story  | NACCS-Prototype-<br>2    | IWR COMM<br>Contents Composite<br>DDF | 0.13 |
| COM-MR    | СОМ                | Commercial Bldg<br>Mid-Rise           | NACCS-Prototype-<br>4A   | NACCS-Prototype-4A                    | 0.38 |
| COM-MS    | СОМ                | Commercial Bldg<br>Multi-Story        | NACCS-Prototype-<br>2    | IWR COM Contents<br>Composite DDF     | 0.38 |
| COMM-SS   | СОММ               | Community Center<br>Bldg Single Story | IWR-Prototype-19         | IWR COMM<br>Contents Composite<br>DDF | 0.13 |
| COM-SS    | СОМ                | Commercial Bldg<br>Single Story       | NACCS-Prototype-<br>2    | IWR COM Contents<br>Composite DDF     | 0.38 |
| ES-MS     | MFR                | Vacant Multi-Story                    | NACCS-Prototype-<br>2    | NULL                                  | 0.00 |
| ES-SS     | MFR                | Vacant Single Story                   | NACCS-Prototype-<br>2    | NULL                                  | 0.00 |
| GAZEBO-SS | IND                | Gazebo Single Story                   | NACCS-Prototype-<br>3    | NULL                                  | 0.37 |
| GOV-HR    | GOV                | Government Bldg<br>High Rise          | NACCS-Prototype-<br>4A   | NACCS-Prototype-4A                    | 0.47 |
| GOV-MR    | GOV                | Government Bldg<br>Mid-Rise           | NACCS-Prototype-<br>4A   | NACCS-Prototype-4A                    | 0.47 |
| GOV-MS    | GOV                | Government Bldg<br>Multi-Story        | NACCS-Prototype-<br>2    | IWR GOV Contents<br>Composite DDF     | 0.47 |
| GOV-SS    | GOV                | Government Bldg<br>Single Story       | NACCS-Prototype-<br>2    | IWR GOV Contents<br>Composite DDF     | 0.47 |
| HOSP-MR   | HOSP               | Hospital Medical<br>Bldg Mid-Rise     | NACCS-Prototype-<br>4A   | IWR HOSP Contents<br>Composite DDF    | 0.21 |
| HOSP-MS   | HOSP               | Hospital Medical<br>Bldg Multi-Story  | NACCS-Prototype-<br>1A-3 | IWR HOSP Contents<br>Composite DDF    | 0.21 |
| HOSP-SS   | НОЅР               | Hospital Medical<br>Bldg Single Story | IWR-Prototype-6          | IWR HOSP Contents<br>Composite DDF    | 0.21 |

 Table 4: Damage Functions & CSVRs by Occupancy Type (Part 1)

| Occupancy Damage<br>Category |     | Description                             | Structure                         | Contents                          | CSVR |
|------------------------------|-----|-----------------------------------------|-----------------------------------|-----------------------------------|------|
| MFR-HR                       | MFR | Multi-Family Residence NACCS-Prototyne- |                                   | NACCS-Prototype-4A                | 0.10 |
| MFR-MR                       | MFR | Multi-Family Residence<br>Mid-Rise      | NACCS-Prototype-<br>4A            | NACCS-Prototype-4A                | 0.10 |
| MFR-MS                       | MFR | Multi-Family Residence<br>Multi-Story   | NACCS-Prototype-<br>1A-3          | NACCS-Prototype-1A-3              | 0.10 |
| MFR-SS                       | MFR | Multi-Family Residence<br>Single Story  | NACCS-Prototype-<br>1A-1          | NACCS-Prototype-1A-1              | 0.10 |
| SFR-MR                       | SFR | Single Family Residence<br>Mid-Rise     | NACCS-Prototype-<br>5B            | NACCS-Prototype-5B                | 0.50 |
| SFR-MS                       | SFR | Single Family Residence<br>Multi-Story  | NACCS-Prototype-<br>5B            | NACCS-Prototype-5B                | 0.50 |
| SFR-SS                       | SFR | Single Family Residence<br>Single Story | Family Residence NACCS-Prototype- |                                   | 0.50 |
| SHED-MS                      | IND | Sheds Multi-Story                       | NACCS-Prototype-3                 | IWR IND Contents<br>Composite DDF | 0.37 |
| SHED-SS                      | IND | Sheds Single Story                      | NACCS-Prototype-3                 | IWR IND Contents<br>Composite DDF | 0.37 |
| TRAILERS-<br>MS              |     | Trailers Multi-Story                    | NACCS-Prototype-3                 | IWR IND Contents<br>Composite DDF | 0.37 |
| TRAILERS-SS IND              |     | Trailers Single Story                   | NACCS-Prototype-3                 | IWR IND Contents<br>Composite DDF | 0.37 |
| GAZEBO-MS                    | IND | Gazebo Multi-Story                      | NACCS-Prototype-3                 | NULL                              | 0.00 |

#### Table 5: Damage Functions & CSVRs by Occupancy Type (Part 2)

## 2.3 Structure Inventory Profile by Planning Reach

The damage element inventory contains 19,675 damageable structures with an estimated value of \$3.83B, with structure and content valuations of \$2.72B and \$1.11B respectively. The following sections break down structure inventory by planning reach.

#### 2.3.1 Reach 1 – West San Juan Bay

West San Juan Bay consists of 17,973 separable damage elements with an overall estimated value of \$3.14B, with structure and content valuations of \$2.21B and \$933M respectively. The structure and content value distribution within West San Juan Bay is broken down by occupancy type in Table 2-5.

| Occupancy   | Count of       | Existing Content | Existing Structure | Percent of Total in |
|-------------|----------------|------------------|--------------------|---------------------|
| Туре        | Occupancy Type | Value            | Value              | Reach               |
| AUTO-MFR-HR | 2              | \$0.00           | \$271,454.40       | 0.01%               |
| AUTO-MFR-MR | 4              | \$0.00           | \$155,116.80       | 0.02%               |
| AUTO-MFR-MS | 545            | \$0.00           | \$66,583,886.40    | 3.03%               |
| AUTO-MFR-SS | 28             | \$0.00           | \$361,939.20       | 0.16%               |
| AUTO-SFR-MS | 3366           | \$0.00           | \$21,755,131.20    | 18.73%              |
| AUTO-SFR-SS | 4450           | \$0.00           | \$28,761,240.00    | 24.76%              |
| COM-HR      | 5              | \$15,354,625.12  | \$40,836,770.23    | 0.03%               |
| COMM-MS     | 80             | \$1,773,350.00   | \$14,000,000.00    | 0.45%               |
| COM-MR      | 27             | \$20,826,927.70  | \$55,390,755.88    | 0.15%               |
| COM-MS      | 495            | \$64,562,288.28  | \$171,708,075.00   | 2.75%               |
| COMM-SS     | 63             | \$1,396,511.67   | \$11,025,000.00    | 0.35%               |
| COM-SS      | 309            | \$40,302,516.12  | \$107,187,465.00   | 1.72%               |
| ES-SS       | 1              | \$0.00           | \$450,000.00       | 0.01%               |
| GAZEBO-MS   | 1              | \$0.00           | \$0.00             | 0.01%               |
| GAZEBO-SS   | 11             | \$952,380.00     | \$2,574,000.00     | 0.06%               |
| GOV-HR      | 2              | \$7,595,640.00   | \$16,334,708.09    | 0.01%               |
| GOV-MR      | 8              | \$7,631,616.00   | \$16,412,075.82    | 0.04%               |
| GOV-MS      | 111            | \$51,615,000.00  | \$111,000,000.00   | 0.62%               |
| GOV-SS      | 67             | \$31,155,000.00  | \$67,000,000.00    | 0.37%               |
| HOSP-MS     | 2              | \$0.00           | \$0.00             | 0.01%               |
| HOSP-SS     | 1              | \$82,779.00      | \$403,800.00       | 0.01%               |
| MFR-HR      | 2              | \$1,633,470.00   | \$16,334,708.09    | 0.01%               |
| MFR-MR      | 4              | \$3,282,415.95   | \$8,206,037.91     | 0.02%               |
| MFR-MS      | 545            | \$9,537,500.00   | \$95,375,000.00    | 3.03%               |
| MFR-SS      | 28             | \$490,000.00     | \$4,900,000.00     | 0.16%               |
| SFR-MS      | 3366           | \$290,580,541.77 | \$581,162,959.12   | 18.73%              |
| SFR-SS      | 4450           | \$384,160,290.69 | \$768,322,985.17   | 24.76%              |
| Total       | 17973          | \$932,932,852.30 | \$2,206,513,108.31 | 100%                |

| Table 2-6: West San. | luan Bav tuture | without-project  | damaaes by | Occupancy Type |
|----------------------|-----------------|------------------|------------|----------------|
|                      | raan Day jacare | michioac project | aannageooy | occupancy type |

West San Juan Bay (WSJB) is broken up further into eleven (11) sub-reaches. These sub-reaches are described in detail below, and the overall content and structure value distribution within the reach is displayed in Figure 2-2.

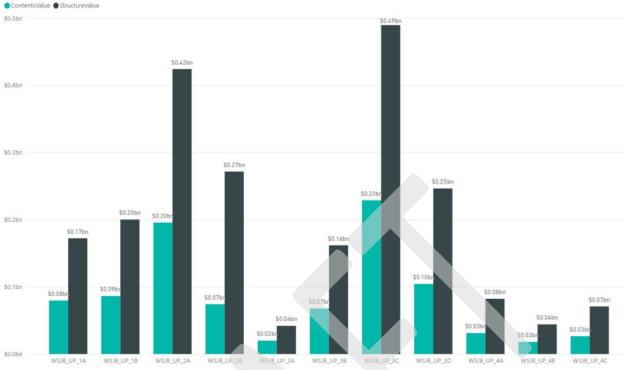



Figure 2-1: Existing content and structure values for West San Juan Bay sub-reaches

#### 2.3.1.1 West San Juan Bay 1

WSJB 1 has two sub areas. 1A contains 420 government, commercial, community and residential damage elements. The overall estimated value totals \$252M, with structure and content valuations of \$172M and \$79M respectively. 1B contains 1,781 government, commercial, community and residential damage elements. The overall estimated value totals \$286M, with structure and content valuations of \$200M and \$86M respectively.

#### 2.3.1.2 West San Juan Bay 2

WSJB2 has two sub areas. 2A contains 4,296 government, commercial, community, hospital and residential damage elements. The overall estimated value totals \$620M, with structure and content valuations of \$424M and \$196M respectively. 2B contains 2,327 government, commercial, community, and residential damage elements. The overall estimated value totals \$346M, with structure and content valuations of \$272M and \$74M respectively.

#### 2.3.1.3 West San Juan Bay 3

WSJB3 has four sub areas. 3A contains 428 government, commercial, community, and residential damage elements. The overall estimated value totals \$62M, with structure and content valuations of \$42M and \$20M respectively. 3B contains 1,287 government, commercial, community, hospital and residential damage elements. The overall estimated value totals \$230M, with structure and content valuations of \$162M and \$68M respectively. 3C contains 5,227 government, commercial, community, and residential damage elements. The overall estimated value totals \$719M, with structure and content valuations of \$490M and \$229M respectively. 3D contains 1,778 government, commercial, community, and residential damage elements. The overall estimated value totals \$351M, with structure and content valuations of \$440M and \$229M respectively. 3D contains 1,778 government, commercial, community, and residential damage elements. The overall estimated value totals \$351M, with structure and content valuations of \$440M and \$229M respectively.

#### 2.3.1.4 West San Juan Bay 4

WSJB4 has three sub areas. 4A contains 205 government, commercial and residential damage elements. The overall estimated value totals \$113M, with structure and content valuations of \$82M and \$31M respectively. 4B contains 64 government, commercial, and community damage elements. The overall estimated value totals \$62M, with structure and content valuations of \$44M and \$18M respectively. 4C contains 160 commercial damage elements. The overall estimated value totals \$97M, with structure and content valuations of \$71M and \$27M respectively.

#### 2.3.2 Reach 2 – East San Juan Bay

East San Juan Bay consists of 480 separable damage elements with an overall estimated value of \$476M, with structure and content valuations of \$342M and \$134M respectively. The structure and content value distribution within Condado Lagoon is broken down by occupancy type in Table 2-4.

| Occupancy   | Count of       | Existing Content | Existing Structure | Percent of Total in |
|-------------|----------------|------------------|--------------------|---------------------|
| Туре        | Occupancy Type | Value            | Value              | Reach               |
| AUTO-MFR-HR | 4              | \$0.00           | \$25,852.80        | 0.83%               |
| AUTO-MFR-MR | 4              | \$0.00           | \$25,852.80        | 0.83%               |
| AUTO-MFR-MS | 39             | \$0.00           | \$252,064.80       | 8.13%               |
| AUTO-MFR-SS | 1              | \$0.00           | \$6,463.20         | 0.21%               |
| AUTO-SFR-MS | 39             | \$0.00           | \$252,064.80       | 8.13%               |
| AUTO-SFR-SS | 34             | \$0.00           | \$219,748.80       | 7.08%               |
| COM-HR      | 5              | \$8,165,917.73   | \$21,717,866.31    | 1.04%               |
| COMM-MS     | 4              | \$520,068.02     | \$4,105,800.12     | 0.83%               |
| COM-MR      | 18             | \$13,479,780.26  | \$35,850,479.41    | 3.75%               |
| COM-MS      | 50             | \$18,168,418.50  | \$48,320,261.97    | 10.42%              |
| COMM-SS     | 2              | \$33,205.89      | \$262,151.75       | 0.42%               |
| COM-SS      | 58             | \$13,003,279.92  | \$34,583,191.27    | 12.08%              |
| ES-SS       | 2              | \$0.00           | \$0.00             | 0.42%               |
| GOV-MR      | 6              | \$10,311,933.90  | \$22,176,201.93    | 1.25%               |
| GOV-MS      | 42             | \$49,245,884.59  | \$105,905,128.15   | 8.75%               |
| GOV-SS      | 50             | \$15,176,372.93  | \$32,637,361.14    | 10.42%              |
| HOSP-MS     | 1              | \$942,819.09     | \$4,599,117.50     | 0.21%               |
| MFR-HR      | 4              | \$1,160,779.26   | \$11,607,792.62    | 0.83%               |
| MFR-MR      | 4              | \$473,600.04     | \$4,736,000.36     | 0.83%               |
| MFR-MS      | 39             | \$1,014,758.28   | \$10,147,582.84    | 8.13%               |
| MFR-SS      | 1              | \$14,398.84      | \$143,988.38       | 0.21%               |
| SFR-MS      | 39             | \$1,335,560.15   | \$2,671,120.29     | 8.13%               |
| SFR-SS      | 34             | \$1,157,888.52   | \$2,315,777.04     | 7.08%               |
| Total       | 480            | \$134,204,665.92 | \$342,561,868.28   | 100%                |

 Table 2-7: East San Juan Bay future without-project damages by Occupancy Type

This planning reach is broken up further into six sub-reaches, the content and structure value distribution is displayed below in Figure 2-1. East San Juan Bay (ESJB) 1A, 1B and 2A are predominantly

commercial and government structures (18, 28 and 34 damage elements, respectively). ESJB 1C, 2B and 2C additionally have residential, hospital and community structures in addition to commercial and governmental (174, 197 and 29 damage elements, respectively).

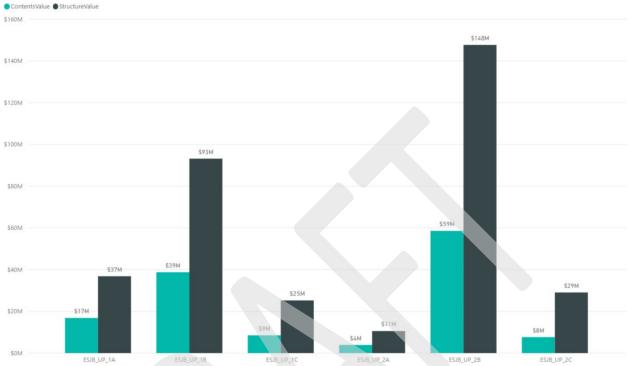



Figure 2-2: Existing content and structure values for East San Juan Bay sub-reaches

#### 2.3.3 Reach 3 – Condado Lagoon

Condado Lagoon consists of 1,222 separable damage elements with an overall estimated value of \$208M, with structure and content valuations of \$169M and \$39M respectively. The structure and content value distribution within Condado Lagoon is broken down by occupancy type in Table 2-3.

| Occupancy   | Count of       | <b>Existing Content</b> | Existing Structure | Percent of Total in |
|-------------|----------------|-------------------------|--------------------|---------------------|
| Туре        | Occupancy Type | Value                   | Value              | Reach               |
| AUTO-MFR-HR | 64             | \$0.00                  | \$3,729,266.40     | 5.24%               |
| AUTO-MFR-MR | 59             | \$0.00                  | \$2,478,637.20     | 4.83%               |
| AUTO-MFR-MS | 152            | \$0.00                  | \$6,385,641.60     | 12.44%              |
| AUTO-MFR-SS | 11             | \$0.00                  | \$142,190.40       | 0.90%               |
| AUTO-SFR-MS | 161            | \$0.00                  | \$1,040,575.20     | 13.18%              |
| AUTO-SFR-SS | 101            | \$0.00                  | \$652,783.20       | 8.27%               |
| COM-HR      | 4              | \$1,977,453.00          | \$5,259,184.33     | 0.33%               |
| COMM-MS     | 14             | \$1,565,511.00          | \$12,359,290.01    | 1.15%               |
| COM-MR      | 10             | \$2,083,831.00          | \$5,542,105.89     | 0.82%               |
| COM-MS      | 52             | \$6,254,331.00          | \$16,633,863.37    | 4.26%               |
| COMM-SS     | 8              | \$96,270.00             | \$760,025.55       | 0.65%               |
| COM-SS      | 30             | \$2,123,528.00          | \$5,647,673.26     | 2.45%               |
| GAZEBO-SS   | 2              | \$41,869.00             | \$113,161.76       | 0.16%               |

Table 2-8: Condado Lagoon future without-project damages by Occupancy Type

| GOV-MS  | 2    | \$390,396.00     | \$839,562.05      | 0.16%  |
|---------|------|------------------|-------------------|--------|
| GOV-SS  | 3    | \$43,055.00      | \$92,591.00       | 0.25%  |
| HOSP-MS | 1    | \$46,763.00      | \$228,114.21      | 0.08%  |
| MFR-HR  | 64   | \$4,058,047.00   | \$40,580,476.97   | 5.24%  |
| MFR-MR  | 59   | \$1,054,218.00   | \$10,542,220.90   | 4.83%  |
| MFR-MS  | 152  | \$1,905,738.00   | \$19,057,413.92   | 12.44% |
| MFR-SS  | 11   | \$232,944.00     | \$2,329,450.48    | 0.90%  |
| SFR-MS  | 161  | \$11,298,335.00  | \$22,596,660.55   | 13.18% |
| SFR-SS  | 101  | \$6,133,902.00   | \$12,267,801.84   | 8.27%  |
| Total   | 1222 | \$ 39,306,191.00 | \$ 169,278,690.09 | 100%   |

57.53% of structures in this planning reach are single story, predominantly slab foundation (43.94%)

# 2.4 Structure Inventory Uncertainties

The structure inventory was compiled using virtual databases and Google Earth. Data used may not be up to date to include new structures, vacant buildings and lots or correct occupancy types.

# 3 Forecast of Conditions (FWOP)

# 3.1 FWOP Condition Assumptions

Assumptions made for the future without project condition (FWOP)

- Start Year: 2020
- ✤ Base Year: 2029<sup>1</sup>
- Number of Iterations: 5<sup>2</sup>
- Duration: 55 years
- SLC Rate: 0.0066929 / Intermediate

## 3.1.1 Life Loss Assumptions

Data sources:

- 1) National Structure Inventory 1.0 for Puerto Rico
- 2) NOAA National Storm Surge Hazard Map ArcGIS Story Map for Puerto Rico and U.S. Virgin Islands
- 3) Online Puerto Rico Seismic Network Tsunami Program Flood and Evacuation Maps

National Structure Inventory (NSI) data for Puerto Rico was used to determine population per occupancy type over and under 65 years old, during the day and night. Data was averaged per study reach for each FEMA-occupancy type, and was then converted into the USACE-defined occupancy types used in the structure inventory. These values were then assigned to the assets within the structure inventory. Assets with unique population values (schools, hospitals, etc.) were researched to find the actual population values. This was unsuccessful for some assets.

<sup>&</sup>lt;sup>1</sup> Base year was originally 2025 and was updated to 2029 based on construction durations

<sup>&</sup>lt;sup>2</sup> Damages presented for FWOP are from 5-iteration model runs and are a good representation of damages. 50iteration model runs will be used for refined benefits analysis

There have been mandatory evacuations due to hurricanes in Puerto Rico, recorded for Hurricanes Maria (2017) and Hugo (1989). Both hurricanes were category 4 upon landfall in Puerto Rico. The evacuation for Hugo was determined based on the SLOSH decision-arc methodology, whereas the evacuation for Maria was due to the storm's proximity to Hurricane Irma (2017, category 5 upon landfall) that struck the island only two weeks prior. Other recorded evacuations indicated that 28,000+ people evacuated for Hurricane Georges (1998, category 4) although no evacuation orders were issued. Hurricane Jeanne (2004, category 3) triggered an evacuation near Río Grande De Añasco, but only after rainfall caused damages to roadways and bridges.

Storm surge hazard maps are available for the study area displaying flooding vulnerability during a hurricane for all five category storms. Historically, evacuations have not been issued for storms categorized below a category 3. Using the National Storm Surge Hazard Maps for San Juan, water levels that would trigger evacuation orders can be determined for each study area from category 3 and above storms. For example, Condado Lagoon experiences levels less than 3 ft above ground for a majority of the study area up through a category 3 storm. Once a category 4 storm is mapped, over half of the Evacuation Planning Zone is inundated with levels over 3 ft.

There are no evacuation plans set in Puerto Rico based off of storm surge levels. Current evacuation plans put in place are for a tsunami, with designated evacuation areas, routes, assembly areas and siren locations. The sensors used for the tsunami warning system record and analyze seismic activity, only reporting activity measuring 4.5 or higher on the Richter scale. However, seismic activity does not always correlate to a tsunami or definite change in water level.

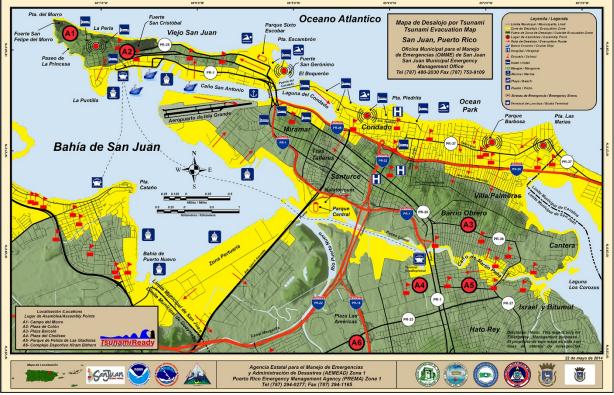



Figure 3-1: Tsunami evacuation map for San Juan, Puerto Rico

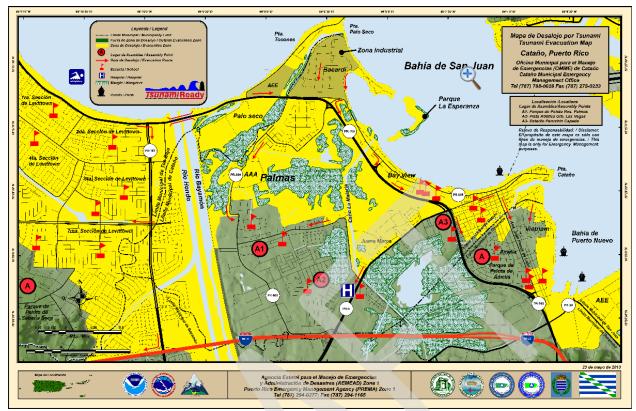



Figure 3-2: Tsunami evacuation map for San Juan, Puerto Rico

# 3.2 FWOP Condition Damages

## 3.2.1 FWOP: Overall Damage Statistics

50 iteration model runs for future without-project conditions across the study area modeled a range of damages between \$1.6B and \$3.6B in present value dollars. Descriptive statistics on the FWOP models are displayed in Table 3-1. Figure 3-2 shows the distribution of PV damages by model area and sub-reach.

#### Table 3-1: Future without-project condition damages

| Model Area        | Minimum Value      | Lower Quantile     | Median Value       | Upper Quantile     | Maximum Value      | Mean PV Damages    |
|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Condado Lagoon    | \$33,638,480.46    | \$38,709,954.00    | \$46,652,969.81    | \$59,183,011.31    | \$66,362,912.03    | \$48,698,622.80    |
| East San Juan Bay | \$14,344,808.27    | \$18,166,652.54    | \$24,189,794.89    | \$35,491,167.15    | \$42,063,585.80    | \$26,576,144.29    |
| West San Juan Bay | \$1,621,872,645.55 | \$1,916,368,643.71 | \$2,405,674,624.04 | \$3,060,341,351.94 | \$3,543,856,322.54 | \$2,490,720,820.31 |
| Total             | \$1,699,855,934.28 | \$1,973,245,250.25 | \$2,476,517,388.74 | \$3,155,015,530.39 | \$3,652,282,820.37 | \$2,565,995,587.41 |

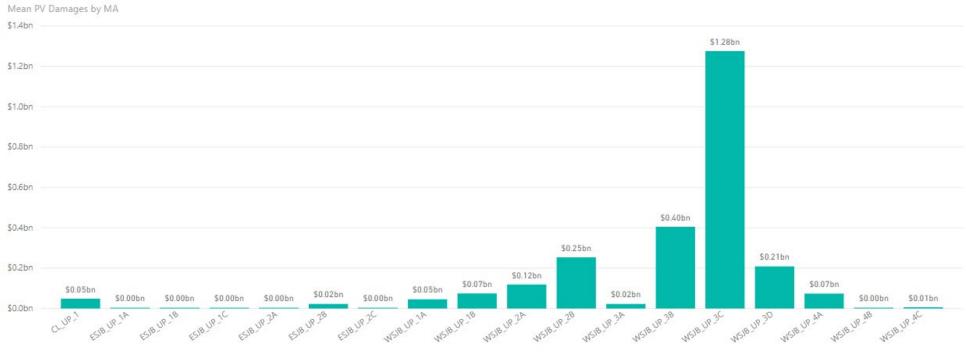



Figure 3-3: Mean PV Damages by Model Area

#### 3.2.1.1 Reach 1 – West San Juan Bay

50 iteration model runs for future without-project conditions across the study area modeled a range of damages between \$1.6B and \$3.5B in present value dollars. Descriptive statistics on the FWOP models for the WSJB sub-reaches are displayed in Table 3-1.

| Model Area | Minimum Value      | Lower Quantile     | Median Value       | Upper Quantile     | Maximum Value      | Mean PV            |
|------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|            |                    |                    |                    |                    |                    | Damages            |
| WSJB_UP_1A | \$22,694,652.00    | \$29,194,227.98    | \$40,320,052.67    | \$62,917,406.80    | \$79,123,194.49    | \$45,879,285.62    |
| WSJB_UP_1B | \$46,894,065.49    | \$55,665,945.45    | \$70,942,425.12    | \$94,001,889.06    | \$109,682,629.14   | \$74,746,504.84    |
| WSJB_UP_2A | \$65,917,672.93    | \$82,967,277.89    | \$110,116,630.13   | \$154,162,607.79   | \$195,156,058.47   | \$119,269,664.87   |
| WSJB_UP_2B | \$154,173,151.62   | \$180,249,663.88   | \$229,323,250.48   | \$323,447,267.44   | \$413,098,770.97   | \$253,700,921.75   |
| WSJB_UP_3A | \$8,776,015.77     | \$13,155,210.57    | \$22,756,910.95    | \$31,352,307.84    | \$39,691,537.10    | \$22,750,393.00    |
| WSJB_UP_3B | \$255,862,038.54   | \$322,292,806.37   | \$409,060,527.75   | \$487,522,347.51   | \$545,257,667.41   | \$404,868,622.31   |
| WSJB_UP_3C | \$898,027,208.63   | \$1,024,839,423.95 | \$1,244,970,604.69 | \$1,526,309,185.40 | \$1,718,049,146.46 | \$1,275,946,339.25 |
| WSJB_UP_3D | \$134,189,962.01   | \$156,274,224.84   | \$201,796,594.44   | \$261,325,688.47   | \$298,116,295.21   | \$208,869,918.60   |
| WSJB_UP_4A | \$32,056,442.67    | \$47,026,857.85    | \$66,818,632.87    | \$102,498,479.65   | \$125,141,354.88   | \$73,941,107.58    |
| WSJB_UP_4B | \$1,720,942.56     | \$1,972,080.12     | \$4,293,022.12     | \$6,276,938.36     | \$7,168,745.04     | \$4,222,278.73     |
| WSJB_UP_4C | \$1,560,493.32     | \$2,730,924.80     | \$5,275,972.82     | \$10,527,233.64    | \$13,370,923.37    | \$6,525,783.76     |
| Total      | \$1,621,872,645.54 | \$1,916,368,643.70 | \$2,405,674,624.04 | \$3,060,341,351.96 | \$3,543,856,322.54 | \$2,490,720,820.31 |

Table 3-2: West San Juan Bay future without-project condition damages

#### 3.2.1.2 Reach 2 – East San Juan Bay

50 iteration model runs for future without-project conditions across the study area modeled a range of damages between \$14.3M and \$42.1M in present value dollars. Descriptive statistics on the FWOP models for the ESJB sub-reaches are displayed in Table 3-3.

| Model Area | Minimum Value   | Lower Quantile Median Value Upper Quantile |                 | Upper Quantile  | Maximum Value   | Mean PV         |
|------------|-----------------|--------------------------------------------|-----------------|-----------------|-----------------|-----------------|
|            |                 |                                            |                 |                 |                 | Damages         |
| ESJB_UP_1A | \$53,449.44     | \$555,878.06                               | \$930,307.50    | \$2,268,805.58  | \$3,029,669.40  | \$1,341,778.48  |
| ESJB_UP_1B | \$222,385.65    | \$294,876.64                               | \$551,632.37    | \$574,639.87    | \$589,234.70    | \$452,343.46    |
| ESJB_UP_1C | \$18,914.84     | \$47,101.35                                | \$99,072.05     | \$405,073.70    | \$629,188.54    | \$220,277.26    |
| ESJB_UP_2A | \$173,990.09    | \$313,835.53                               | \$613,282.89    | \$1,547,454.69  | \$2,118,268.46  | \$910,269.50    |
| ESJB_UP_2B | \$13,396,354.57 | \$16,373,215.91                            | \$21,235,225.12 | \$29,512,702.37 | \$34,291,283.44 | \$22,781,584.31 |
| ESJB_UP_2C | \$479,713.68    | \$581,745.07                               | \$760,274.97    | \$1,182,490.93  | \$1,405,941.26  | \$869,891.29    |
| Total      | \$14,344,808.27 | \$18,166,652.56                            | \$24,189,794.90 | \$35,491,167.14 | \$42,063,585.80 | \$26,576,144.30 |

Table 3-3: East San Juan Bay future without-project condition damages

#### 3.2.1.3 Reach 3 – Condado Lagoon

The future without project damages across the Condado Lagoon study area ranged between \$33.6 M and \$66.4 M present value dollars. Descriptive statistics on the FWOP model for Condado Lagoon is displayed in

Table 3-4: Condado Lagoon future without-project condition damages

| Table of the consistence of the consistence and the geo |                 |                 |                 |                 |                 |                 |  |  |
|---------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|
| Model Area                                              | Minimum Value   | Lower Quantile  | Median Value    | Upper Quantile  | Maximum Value   | Mean PV         |  |  |
|                                                         |                 |                 |                 |                 |                 | Damages         |  |  |
| Condado Lagoon                                          | \$33,638,480.46 | \$38,709,954.00 | \$46,652,969.81 | \$59,183,011.31 | \$66,362,912.03 | \$48,698,622.80 |  |  |

## 3.2.2 FWOP: Damages by Occupancy

Pursuant to estimating future without project condition damages and associated costs for the San Juan Metro study area, G2CRM was used to estimate damages and costs for the following categories:

- <u>Structure Damage</u>: Economic losses resulting from the structures situated within a low-lying area prone to flooding from coastal storms and hurricanes. Structure damages account for approximately 61.7% of the total FWOP damages
- <u>Content Damage</u>: The material items housed within the structures that are potentially subject to damage. Content damages make up approximately 38.3% of the total FWOP damages.

Table 3-4 provides greater detail on the composition of the average FWOP damages by category and damage element type based on the *AssetDamageDetail.csv* model output files

| Damage Element | Average PV      | Average PV           | Total Loss PV    | Percent of |
|----------------|-----------------|----------------------|------------------|------------|
| Туре           | Structure Loss  | <b>Contents Loss</b> |                  | Total Loss |
| AUTO           | \$71,199,545    | \$0                  | \$71,199,545     | 0.56%      |
| COM            | \$798,441,189   | \$373,655,901        | \$1,172,097,177  | 9.14%      |
| COMM           | \$30,245,163    | \$3,521,071          | \$33,766,215     | 0.26%      |
| GOV            | \$715,964,605   | \$305,209,998        | \$1,021,174,586  | 7.96%      |
| HOSP           | \$2,058,973     | \$246,596            | \$2,305,570      | 0.02%      |
| MFR            | \$66,542,224    | \$20,937,050         | \$87,479,261     | 0.68%      |
| OTHER          | \$7,157,974     | \$0                  | \$7,157,974      | 0.06%      |
| SFR            | \$6,221,273,566 | \$4,204,746,869      | \$10,426,020,514 | 81.32%     |
| Total          | \$7,912,883,239 | \$4,908,317,485      | \$12,821,200,842 | 100.00%    |

Table 3-5: Distribution of FWOP Damages by Category and Type

## 3.2.2.1 Single Family Residences (SFR)

Single family residences consist of 1-3 story structures of varying construction type and value. This category accounts for the majority of the damage elements in the study area. 81.23% of the total FWOP damages are associated with the direct damages to these structures and their contents. This damage element type is well distributed across the study area, but has a high concentration in West San Juan Bay.

## 3.2.2.2 Multi-Family Residences (MFR)

Multi-family residences consist of multi-story structures of varying construction type and value. This category accounts for 0.68% of the total FWOP damages. There is a high concentration of this damage element type in Condado Lagoon as well as West San Juan Bay sub-reach 2.

## 3.2.2.3 Commercial (COM)

Damages associated with commercial structures and their contents make up 9.14% of the overall FWOP damages. Types of structures associated with this damage element include retail, banks, entertainment, parking and recreation. This damage element type is well distributed across the study area.

#### 3.2.2.4 Government (GOV)

Damages associated with Government buildings and their contents make up 7.96% of the overall FWOP damages

#### 3.2.2.5 Hospital (HOSP)

Damages associated with hospitals and their contents make up only 0.02% of the overall FWOP damages. There were only 5 structures within this category for the entire study area.

#### 3.2.2.6 Other Damage Elements

The remaining structures include AUTO, COMM and OTHER damage element types. The damages associated with these structures and their contents make up a combined 0.88% of the overall FWOP damages

#### 3.2.3 FWOP Damages over Space

There are several reaches within the study area modeled where the FWOP damages are the greatest. West San Juan Bay 3 makes up 83.54% of the overall FWOP damages. FWOP present value damages by study area reach is summarized in Table 3-5.

| Model Area        | Sub Reach | Average PV      | Average PV           | Total Loss PV    | Percent           |
|-------------------|-----------|-----------------|----------------------|------------------|-------------------|
|                   |           | Structure Loss  | <b>Contents Loss</b> |                  | <b>Total Loss</b> |
| Condado Lagoon    | n/a       | \$178,329,473   | \$65,163,431         | \$243,492,983    | 1.90%             |
| East San Juan Bay | 1A        | \$5,419,295     | \$1,289,597          | \$6,708,893      | 0.05%             |
| East San Juan Bay | 1B        | \$0             | \$2,261,695          | \$2,261,695      | 0.02%             |
| East San Juan Bay | 1C        | \$891,227       | \$210,168            | \$1,101,387      | 0.01%             |
| East San Juan Bay | 2A        | \$3,497,804     | \$1,053,532          | \$4,551,343      | 0.04%             |
| East San Juan Bay | 2B        | \$74,652,565    | \$39,255,374         | \$113,907,923    | 0.89%             |
| East San Juan Bay | 2C        | \$1,639,598     | \$2,709,843          | \$4,349,429      | 0.03%             |
| West San Juan Bay | 1A        | \$147,145,075   | \$82,251,308         | \$229,396,274    | 1.79%             |
| West San Juan Bay | 1B        | \$233,375,604   | \$140,356,607        | \$373,732,385    | 2.91%             |
| West San Juan Bay | 2A        | \$322,579,884   | \$273,768,352        | \$596,348,245    | 4.65%             |
| West San Juan Bay | 2B        | \$692,306,256   | \$576,198,189        | \$1,268,504,401  | 9.89%             |
| West San Juan Bay | 3A        | \$73,096,371    | \$40,655,558         | \$113,751,953    | 0.89%             |
| West San Juan Bay | 3B        | \$1,324,654,146 | \$699,688,514        | \$2,024,342,551  | 15.78%            |
| West San Juan Bay | 3C        | \$3,903,254,901 | \$2,467,701,273      | \$6,370,956,222  | 49.66%            |
| West San Juan Bay | 3D        | \$649,437,971   | \$394,911,266        | \$1,044,349,253  | 8.14%             |
| West San Juan Bay | 4A        | \$268,786,692   | \$100,918,828        | \$369,705,582    | 2.88%             |
| West San Juan Bay | 4D        | \$10,606,855    | \$10,504,557         | \$21,111,413     | 0.16%             |
| West San Juan Bay | 4C        | \$23,209,522    | \$9,419,393          | \$32,628,910     | 0.25%             |
| Total             |           | \$7,912,883,239 | \$4,908,317,485      | \$12,821,200,842 | 100%              |

Table 3-6: FWOP present value damages by Category and Model Area

The following maps (Figure 3-3 to Figure 3-8) show the damage elements in each study area. The DE are color coded based on the legend at the top of each figure. The size of the DE bubble correlates to the Total Loss PV: the higher the loss the larger the bubble.

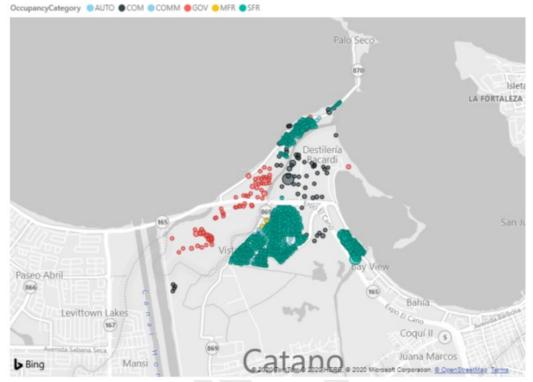



Figure 3-4: West San Juan Bay 1 Damage Elements

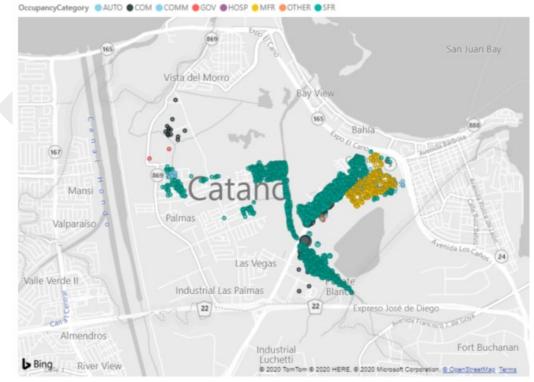



Figure 3-5: West San Juan Bay 2 Damage Elements

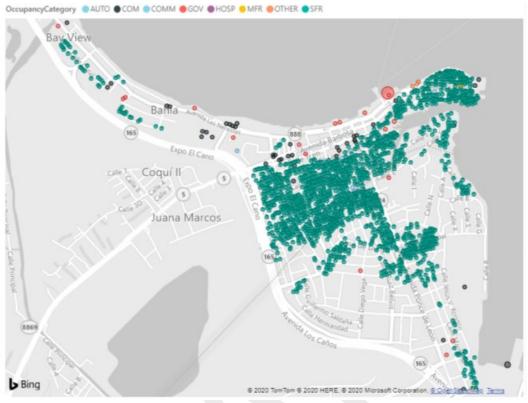



Figure 3-6: West San Juan Bay 3 Damage Elements

OccupancyCategory 
AUTO COM COMM

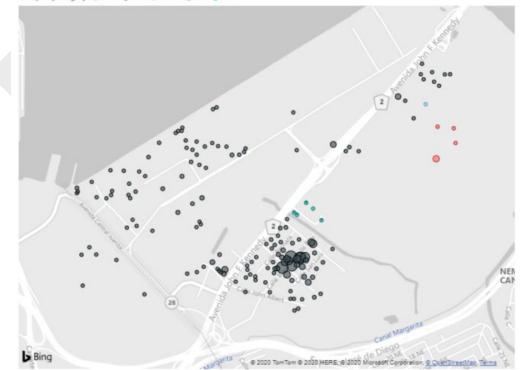



Figure 3-7: West San Juan Bay 4 Damage Elements

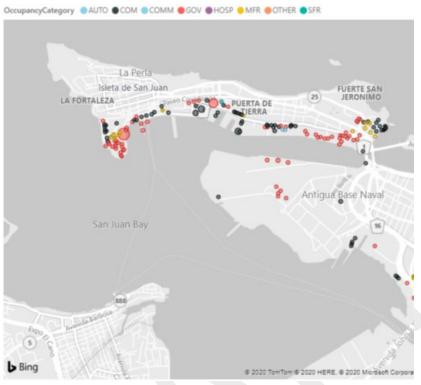



Figure 3-8: East San Juan Bay Damage Elements

OccupancyCategory OAUTO OCOM OCOMM OGOV OHOSP OMFR OTHER OSFR



Figure 3-9: Condado Lagoon Damage Elements

## 3.2.4 FWOP: Damages over Time

Figure 3-7, Figure 3-8 and Figure 3-9 show the distribution of PV damage over time in each study reach.

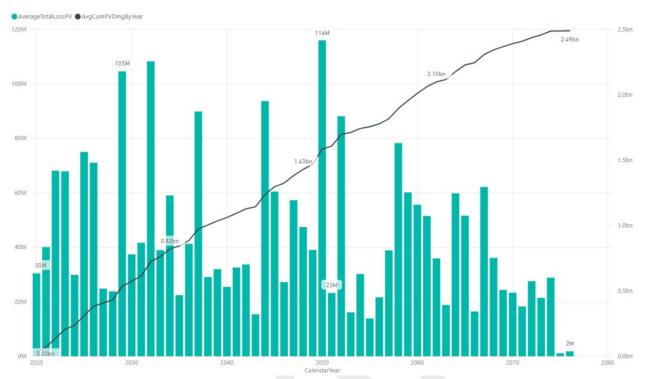







Figure 3-11: East San Juan Bay Damages over Time

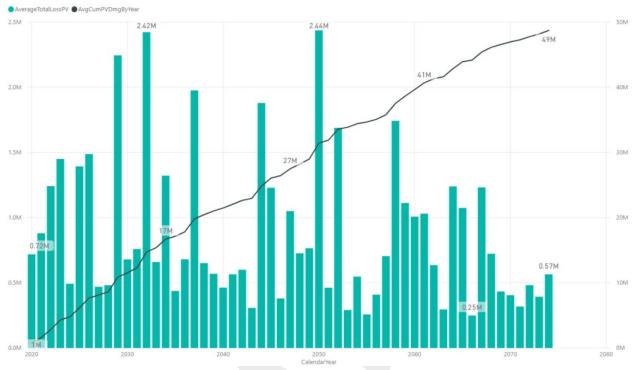



Figure 3-12: Condado Lagoon Damages over Time

# 3.2.5 FWOP: Damages by Flood Water Level

#### 3.2.5.1 Reach 1 – West San Juan Bay

The figure below shows the flood water levels and cumulative damages caused at different stages. Majority of damages are caused by stages of 2 feet (\$820M), with cumulative damages up to \$2.49B occurring up to 8 feet.

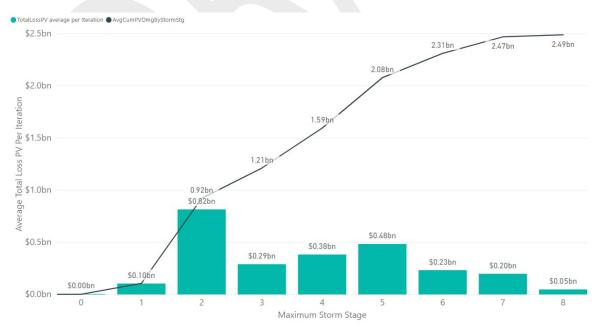



Figure 3-13: West San Juan Bay Damages by Maximum Storm Stage

#### 3.2.5.2 Reach 2 – East San Juan Bay

The figure below shows the flood water levels and cumulative damages caused at different stages. Damages begin to occur at a stage of 1 foot, with cumulative damages up to \$26.6M occurring up to 8 feet. Majority of damages in this area are caused by stages of 8 feet (\$14.4M).

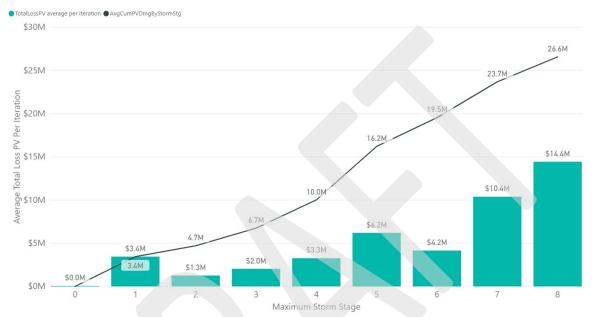



Figure 3-14: East San Juan Bay Damages by Maximum Storm Stage

#### 3.2.5.3 Reach 3 – Condado Lagoon

The figure below shows the flood water levels and cumulative damages caused at different stages. Majority of damages are caused by stages of 2 feet(\$14.2M), with cumulative damages up to \$49M occurring up to 8 feet.

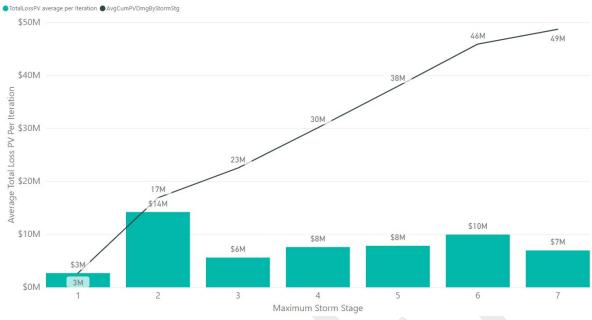



Figure 3-15: Condado Lagoon Damages by Maximum Storm Stage

#### 3.2.6 FWOP: Life Loss

Future without-project life loss analysis compared the populations over 65 and under 65 years old during storm events based on an evacuation and non-evacuation scenario. **Figure 3-16** shows lost lives for the population over 65 for each model area sub-reach, and **Figure 3-17** shows the lost lives for population under 65.

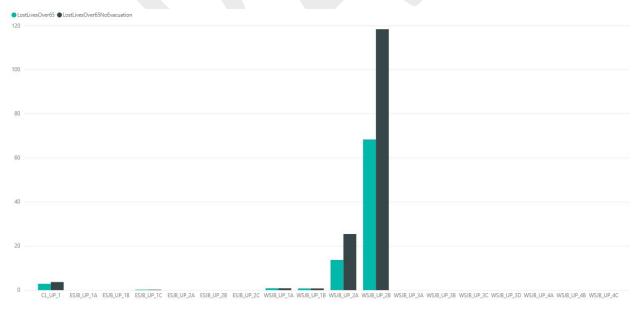



Figure 3-16: Future without-project condition life loss for population Over 65

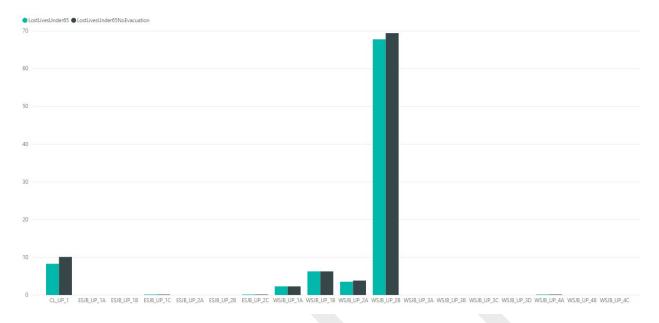



Figure 3-17: Future without-project condition life loss for population Under 65

# 4 Formulate Evaluate & Compare (FWP)

#### 4.1 Alternatives

A description of each alternative and a breakdown of their respective benefits and costs can be seen in Table 4-1. Five NED alternative plans are identified in this table, one for each model area.

| Model Area | Alt ID | Alt        | Measure                                                         | Duration | Total Investment Cost | AAEQ NED Benefits | AAEQ NED Costs | AAEQ Net NED Benefits | BCR   | Selection |
|------------|--------|------------|-----------------------------------------------------------------|----------|-----------------------|-------------------|----------------|-----------------------|-------|-----------|
|            | 1      | Alt 1      | Seawall                                                         | 33.00    | \$74,661,828          | \$1,615,029       | \$2,765,543    | -\$1,150,513          | 0.58  |           |
|            | 2      | Alt 2      | Recreational Seawall                                            | 38.00    | \$82,099,822          | \$1,615,029       | \$3,041,053    | -\$1,426,024          | 0.53  |           |
|            | 3      | Alt 3      | Recreational Seawall + Vegetation                               | 57.00    | \$85,792,472          | \$1,615,029       | \$3,177,832    | -\$1,562,803          | 0.51  |           |
| CL         | 4      | Alt 4      | Elevated Living Shoreline                                       | 31.00    | \$31,681,267          | \$1,615,029       | \$1,173,503    | \$441,526             | 1.38  | NED Plan  |
|            | 5      | Alt 5      | Seawall North + Elevated Living Shoreline South                 | 34.00    | \$59,763,688          | \$1,615,029       | \$2,213,702    | -\$598,673            | 0.73  |           |
|            | 6      | Alt 6      | Recreational Seawall North + Elevated Living Shoreline<br>South | 34.00    | \$64,289,497          | \$1,615,029       | \$2,381,342    | -\$766,313            | 0.68  |           |
|            | 7      | Alt 1a     | Seawall + Levee (1A)                                            | 14.00    | \$36,879,554          | \$845,901         | \$1,366,053    | -\$520,152            | 0.62  |           |
| WSJB 1     | 8      | Alt 1b     | Seawall + Levee + Elevated Living Shoreline (1B)                | 26.00    | \$41,873,923          | \$2,489,862       | \$1,551,049    | \$938,813             | 1.61  | NED Plan  |
| WSID_1     | 9      | Alt 2b     | Seawall + Levee (1B)                                            | 27.00    | \$47,955,498          | \$2,489,862       | \$1,776,316    | \$713,546             | 1.40  |           |
|            | 10     | Alt 1(a+b) | Shoreline                                                       | 59.00    | \$106,955,249         | \$3,520,179       | \$3,961,721    | -\$441,542            | 0.89  |           |
|            | 11     | Alt 1      | Levee + Seawall                                                 | 30.00    | \$38,308,933          | \$10,560,200      | \$1,418,998    | \$9,141,202           | 7.44  |           |
|            | 12     | Alt 2      | Horizontal Levee + Seawall                                      | 36.00    | \$40,542,284          | \$10,560,200      | \$1,501,723    | \$9,058,477           | 7.03  |           |
| WSJB 2     | 13     | Alt 3      | Small Storm Surge Gate + Partial Levee + Seawall                | 20.00    | \$25,097,681          | \$12,722,287      | \$929,641      | \$11,792,646          | 13.69 | NED Plan  |
| W305_2     | 14     | Alt 4      | Small Storm Surge Gate + Partial Horizontal Levee +<br>Seawall  | 22.00    | \$25,639,600          | \$12,722,287      | \$949,714      | \$11,772,572          | 13.40 |           |
|            | 15     | Alt 5      | Buyout in low lying elevations                                  | 36.00    | \$244,422,328         | \$13,532,392      | \$9,053,628    | \$4,478,764           | 1.49  |           |
|            | 16     | Alt 1      | Seawall + T-Wall                                                | 87.00    | \$187,720,996         | \$63,239,363      | \$6,953,358    | \$56,286,005          | 9.09  |           |
|            | 17     | Alt 2      | Seawall + Breakwater                                            | 82.00    | \$162,889,774         | \$63,826,013      | \$6,033,587    | \$57,792,426          | 10.58 |           |
| WSJB_3     | 18     | Alt 3      | Seawall + Spoil Island                                          | 61.00    | \$158,333,319         | \$63,239,363      | \$5,864,812    | \$57,374,551          | 10.78 |           |
|            | 19     | Alt 4      | Seawall + Recreational Seawall + Breakwater                     | 65.00    | \$165,193,235         | \$63,826,013      | \$6,118,909    | \$57,707,103          | 10.43 |           |
|            | 20     | Alt 5      | Seawall + Living Shoreline + 1.83m Breakwater                   | 83.00    | \$156,429,143         | \$63,826,013      | \$5,794,279    | \$58,031,734          | 11.02 | NED Plan  |
| WSJB 4     | 22     | Alt 1      | Seawall                                                         | 19.00    | \$41,729,432          | \$2,667,710       | \$1,545,697    | \$1,122,014           | 1.73  |           |
| WSJB_4     | 23     | Alt 2      | Levee + Seawall                                                 | 17.00    | \$36,993,886          | \$2,667,710       | \$1,370,288    | \$1,297,423           | 1.95  | NED Plan  |

Table 4-1 Economic Summary of Alternatives

A description of costs, benefits, and percent risk reduction for each alternative can be found below in table 4-2.

| Model Area | Alt ID | Alt        | Measure                                                         | Total Investment Cost | AAEQ NED Benefits | AAEQ NED Costs | AAEQ Net NED Benefits | BCR   | % Risk Reduction |
|------------|--------|------------|-----------------------------------------------------------------|-----------------------|-------------------|----------------|-----------------------|-------|------------------|
|            | 1      | Alt 1      | Seawall                                                         | \$74,661,828          | \$1,615,029       | \$2,765,543    | -\$1,150,513          | 0.58  | 90%              |
|            | 2      | Alt 2      | Recreational Seawall                                            | \$82,099,822          | \$1,615,029       | \$3,041,053    | -\$1,426,024          | 0.53  | 90%              |
|            | 3      | Alt 3      | Recreational Seawall + Vegetation                               | \$85,792,472          | \$1,615,029       | \$3,177,832    | -\$1,562,803          | 0.51  | 90%              |
| CL         | 4      | Alt 4      | Elevated Living Shoreline                                       | \$31,681,267          | \$1,615,029       | \$1,173,503    | \$441,526             | 1.38  | 90%              |
|            | 5      | Alt 5      | Seawall North + Elevated Living Shoreline South                 | \$59,763,688          | \$1,615,029       | \$2,213,702    | -\$598,673            | 0.73  | 90%              |
|            | 6      | Alt 6      | Recreational Seawall North + Elevated Living Shoreline<br>South | \$64,289,497          | \$1,615,029       | \$2,381,342    | -\$766,313            | 0.68  | 90%              |
|            | 7      | Alt 1a     | Seawall + Levee (1A)                                            | \$36,879,554          | \$845,901         | \$1,366,053    | -\$520,152            | 0.62  | 50%              |
|            | 8      | Alt 1b     | Seawall + Levee + Elevated Living Shoreline (1B)                | \$41,873,923          | \$2,489,862       | \$1,551,049    | \$938,813             | 1.61  | 90%              |
| WSJB_1     | 9      | Alt 2b     | Seawall + Levee (1B)                                            | \$47,955,498          | \$2,489,862       | \$1,776,316    | \$713,546             | 1.40  | 90%              |
|            | 10     | Alt 1(a+b) | Storm Gate + Seawall + Levee + Elevated Living Shoreline        | \$106,955,249         | \$3,520,179       | \$3,961,721    | -\$441,542            | 0.89  | 79%              |
|            | 11     | Alt 1      | Levee + Seawall                                                 | \$38,308,933          | \$10,560,200      | \$1,418,998    | \$9,141,202           | 7.44  | 76%              |
|            | 12     | Alt 2      | Horizontal Levee + Seawall                                      | \$40,542,284          | \$10,560,200      | \$1,501,723    | \$9,058,477           | 7.03  | 76%              |
| WSJB_2     | 13     | Alt 3      | Small Storm Surge Gate + Partial Levee + Seawall                | \$25,097,681          | \$12,722,287      | \$929,641      | \$11,792,646          | 13.69 | 92%              |
| W355_2     | 14     | Alt 4      | Small Storm Surge Gate + Partial Horizontal Levee +<br>Seawall  | \$25,639,600          | \$12,722,287      | \$949,714      | \$11,772,572          | 13.40 | 92%              |
|            | 15     | Alt 5      | Buyout in low lying elevations                                  | \$244,422,328         | \$13,532,392      | \$9,053,628    | \$4,478,764           | 1.49  | 98%              |
|            | 16     | Alt 1      | Seawall + T-Wall                                                | \$187,720,996         | \$63,239,363      | \$6,953,358    | \$56,286,005          | 9.09  | 89%              |
|            | 17     | Alt 2      | Seawall + Breakwater                                            | \$162,889,774         | \$63,826,013      | \$6,033,587    | \$57,792,426          | 10.58 | 90%              |
| WSJB_3     | 18     | Alt 3      | Seawall + Spoil Island                                          | \$158,333,319         | \$63,239,363      | \$5,864,812    | \$57,374,551          | 10.78 | 89%              |
|            | 19     | Alt 4      | Seawall + Recreational Seawall + Breakwater                     | \$165,193,235         | \$63,826,013      | \$6,118,909    | \$57,707,103          | 10.43 | 90%              |
|            | 20     | Alt 5      | Seawall + Living Shoreline + 1.83m Breakwater                   | \$156,429,143         | \$63,826,013      | \$5,794,279    | \$58,031,734          | 11.02 | 90%              |
| WSJB 4     | 22     | Alt 1      | Seawall                                                         | \$41,729,432          | \$2,667,710       | \$1,545,697    | \$1,122,014           | 1.73  | 85%              |
| **33B_4    | 23     | Alt 2      | Levee + Seawall                                                 | \$36,993,886          | \$2,667,710       | \$1,370,288    | \$1,297,423           | 1.95  | 85%              |

#### Table 4-2 Economic Summary of Alternatives

## 4.2 Evaluation and Comparison

Economic descriptions of each NED alternative plan can be found in tables 4-3 through 4-7. The NED plan alternative 4 for the model area Condado Lagoon is economically justified with a BCR of 1.38. See table 4-3 for a complete summary.

| Table 4-3 Economic Summary of NEL  | ) Plan Alternative 4 |
|------------------------------------|----------------------|
| Economic Summary of NED Plan       | Alt ID 4 (Alt 4)     |
| Price Level                        | FY20                 |
| FY20 Water Resources Discount Rate | 2.75%                |
| Total Average Annual Benefits      | \$1,615,029          |
| Total Average Annual Cost          | \$1,173,503          |
| Net-Benefits                       | \$441,526            |
| Benefit Cost Ratio                 | 1.38                 |

Table 4-3 Economic Summary of NED Plan Alternative 4

The NED plan alternative 1b for the model area West San Juan Bay 1 is economically justified with a BCR of 1.61. See table 4-4 for a complete summary.

| Tuble 4-4 Economic Summary of NED  | FIULT AILETTULIVE 1D |
|------------------------------------|----------------------|
| Economic Summary of NED Plan       | Alt ID 8 (Alt 1b)    |
| Price Level                        | FY20                 |
| FY20 Water Resources Discount Rate | 2.75%                |
| Total Average Annual Benefits      | \$2,489,862          |
| Total Average Annual Cost          | \$1,551,049          |
| Net-Benefits                       | \$938,813            |
| Benefit Cost Ratio                 | 1.61                 |

Table 4-4 Economic Summary of NED Plan Alternative 1b

The NED plan alternative 3 for the model area West San Juan Bay 2 is economically justified with a BCR of 13.69. See table 4-5 for a complete summary.

| Economic Summary of NED Plan       | Alt ID 13 (Alt 3) |  |  |  |  |
|------------------------------------|-------------------|--|--|--|--|
| Price Level                        | FY20              |  |  |  |  |
| FY20 Water Resources Discount Rate | 2.75%             |  |  |  |  |
| Total Average Annual Benefits      | \$12,722,287      |  |  |  |  |
| Total Average Annual Cost          | \$929,641         |  |  |  |  |
| Net-Benefits                       | \$11,792,646      |  |  |  |  |
| Benefit Cost Ratio                 | 13.69             |  |  |  |  |

Table 4-5 Economic Summary of NED Plan Alternative 3

The NED plan alternative 5 for the model area West San Juan Bay 3 is economically justified with a BCR of 11.02. See table 4-6 for a complete summary.

| Table 4-6 Economic Summary o       | f Alternative 5   |
|------------------------------------|-------------------|
| Economic Summary of NED Plan       | Alt ID 20 (Alt 5) |
| Price Level                        | FY20              |
| FY20 Water Resources Discount Rate | 2.75%             |
| Total Average Annual Benefits      | \$63,826,013      |
| Total Average Annual Cost          | \$5,794,279       |
| Net-Benefits                       | \$58,031,734      |
| Benefit Cost Ratio                 | 11.02             |

Table 4-6 Economic Summary of Alternative 5

The NED plan alternative 5 for the model area West San Juan Bay 4 is economically justified with a BCR of 1.95. See table 4-7 for a complete summary.

| Tuble 4-7 Economic Summary 0       | J AILEITIULIVE Z  |
|------------------------------------|-------------------|
| Economic Summary of NED Plan       | Alt ID 23 (Alt 2) |
| Price Level                        | FY20              |
| FY20 Water Resources Discount Rate | 2.75%             |
| Total Average Annual Benefits      | \$2,667,710       |
| Total Average Annual Cost          | \$1,370,288       |
| Net-Benefits                       | \$1,297,423       |
| Benefit Cost Ratio                 | 1.95              |

#### Table 4-7 Economic Summary of Alternative 2

#### 4.2.1 Comparison of Potential Tentatively Selected Plans

Table 4-8 contains economic comparisons of different potential NED plans. The table also presents information on various alternatives that reasonably maximize NED benefits and one that maximizes NED benefits. These potential TSP consist of combined NED plans.

|     | Model Areas                                | Alternative      | Description                                         | Total Investment Cost | AAEQ NED Benefits | AAEQ NED Costs | AAEQ Net NED Benefits | BCR   | % Difference<br>from plan that<br>Generates<br>Highest Benefit | % Difference<br>from plan that<br>Generates<br>Highest net<br>benefit | Change in Cost |
|-----|--------------------------------------------|------------------|-----------------------------------------------------|-----------------------|-------------------|----------------|-----------------------|-------|----------------------------------------------------------------|-----------------------------------------------------------------------|----------------|
|     | CL                                         | CL-Alt 4         | Elevated Living Shoreline                           | \$31,681,267          | \$1,615,029       | \$1,173,503    | \$441,526             | 1.38  | 1.94%                                                          | 0.61%                                                                 | \$260,394,633  |
|     | WSJB_1                                     | WSJB1-Alt 1b     | Seawall + Levee + Elevated Living<br>Shoreline (1B) | \$41,873,923          | \$2,489,862       | \$1,551,049    | \$938,813             | 1.61  | 2.99%                                                          | 1.29%                                                                 | \$250,201,976  |
|     | WSJB_2                                     | WSJB2-Alt 3      | Small Storm Surge Gate + Partial<br>Levee + Seawall | \$25,097,681          | \$12,722,287      | \$929,641      | \$11,792,646          | 13.69 | 15.27%                                                         | 16.27%                                                                | \$266,978,219  |
| TSP | WSJB_3                                     | WSJB3-Alt-5      | Seawall + Living Shoreline +<br>1.83m Breakwater    | \$156,429,143         | \$63,826,013      | \$5,794,279    | \$58,031,734          | 11.02 | 76.60%                                                         | 80.04%                                                                | \$135,646,757  |
|     | WSJB_4                                     | WSJB4-Alt-2      | Levee + Seawall                                     | \$36,993,886          | \$2,667,710       | \$1,370,288    | \$1,297,423           | 1.95  | 3.20%                                                          | 1.79%                                                                 | \$255,082,013  |
|     | Maximizes Net NED Benefits                 | CL+WSJB(1+2+3+4) | NED Plans for<br>CL+WSJB(1+2+3+4)                   | \$292,075,899         | \$83,320,901      | \$10,818,760   | \$72,502,141          | 7.70  | 100.00%                                                        | 100.00%                                                               | \$0            |
|     | -                                          | WSJB(1+2+3+4)    | NED Plans for WSJB(1+2+3+4)                         | \$260,394,633         | \$81,705,872      | \$9,645,257    | \$72,060,615          | 8.47  | 98.06%                                                         | 99.39%                                                                | \$31,681,267   |
|     | Reasonably maximizes net NED .<br>benefits | WSJB(2+3+4)      | NED Plans for WSJB(2+3+4)                           | \$218,520,709         | \$79,216,010      | \$8,094,208    | \$71,121,802          | 9.79  | 95.07%                                                         | 98.10%                                                                | \$73,555,190   |
|     | benents                                    | WSJB(2+3)        | NED Plans for WSJB(2+3)                             | \$181,526,823         | \$76,548,300      | \$6,723,920    | \$69,824,379          | 11.38 | 91.87%                                                         | 96.31%                                                                | \$110,549,076  |
|     |                                            | WSJB(1+2+3)      | NED Plans for WSJB(1+2+3)                           | \$223,400,747         | \$79,038,161      | \$8,274,969    | \$70,763,192          | 9.55  | 94.86%                                                         | 97.60%                                                                | \$68,675,153   |

Table 4-8 TSP Comparison

# 5 The Selected Plan

The PDT selected CL+ (WSJB1+2+3+4) as the TSP. The future without and future with project conditions were ran with the following parameters:

- Start Year: 2020
- Base Year: 2029
- Number of Iterations: 50
- Duration: 60 years
- SLC Rate: 0.0066929 / Intermediate

In addition to these updated runs, project costs were updated to include PED, OMRR&R as well as revisions to the real estate costs. Table 15 provides detail on the updated cost estimate. Table 16 and Table 17 details the annual O&M cost and the NED cost breakdown. Table 18 displays the economic summary in average annual equivalent terms.

Table 7: Updated TSP Costs (\$1,000)

| Item                           | Cost      | Contingency      | Total     |
|--------------------------------|-----------|------------------|-----------|
| Fish & Wildlife Facilities     | \$5,565   | \$2,226          | \$7,792   |
| Levees & Floodwalls            | \$9,474   | \$3,789          | \$13,263  |
| Pumping Plant                  | \$28,800  | \$11,520         | \$40,320  |
| Floodway Control & Diversion   |           |                  |           |
| Structure                      | \$5,982   | \$2,393          | \$8,375   |
| Recreation Facilities          | \$7,220   | \$2,888          | \$10,108  |
| Breakwater & Seawalls          | \$116,916 | \$46,766         | \$163,682 |
| Construction Cost Subtotal     | \$173,957 | \$69,583         | \$243,540 |
| Lands & Damages                | \$26,302  | \$7,890          | \$34,192  |
| PED                            | \$24,677  | \$9 <i>,</i> 870 | \$34,548  |
| RE Admin Costs (Federal)       | \$150     | \$45             | \$195     |
| RE Admin Costs (Non-Federal)   | \$350     | \$105            | \$455     |
| Construction Management        | \$13,339  | \$5 <i>,</i> 336 | \$18,674  |
| Non-Construction Cost Subtotal | \$64,817  | \$23,247         | \$88,064  |
| Grand Total                    | \$238,774 | \$92,830         | \$331,604 |

Table 8: Average Annual O&M Cost

| Sub-Reach | O&M Cost    |
|-----------|-------------|
| CL        | \$158,419   |
| WSJB1     | \$130,005   |
| WSJB2     | \$178,877   |
| WSJB3     | \$1,752,664 |
| WSJB4     | \$50,132    |
| Total     | \$2,270,097 |

#### Table 9: NED Cost Breakdown

| Cost Item                             | CL           | WSJB1        | WSJB2        | WSJB3         | WSJB4        | TSP           |
|---------------------------------------|--------------|--------------|--------------|---------------|--------------|---------------|
| Construction Cost                     | \$19,711,000 | \$29,219,000 | \$25,511,300 | \$144,872,800 | \$24,226,000 | \$243,540,100 |
| Non-Construction Cost                 | \$14,045,550 | \$18,760,250 | \$6,051,150  | \$36,314,750  | \$12,892,400 | \$88,064,100  |
| Total 1st Construction Costs          | \$33,756,550 | \$47,979,250 | \$31,562,450 | \$181,187,550 | \$37,118,400 | \$331,604,200 |
| Interest During Construction<br>Costs | \$1,404,524  | \$1,696,996  | \$909,799    | \$18,066,525  | \$896,158    | \$22,974,003  |
| Total Investment Costs                | \$35,161,074 | \$49,676,246 | \$32,472,249 | \$199,254,075 | \$38,014,558 | \$354,578,203 |
| Annualized Investment Costs           | \$1,302,398  | \$1,840,054  | \$1,202,802  | \$7,380,554   | \$1,408,094  | \$13,133,903  |
| Annual O&M Costs                      | \$158,419    | \$130,005    | \$178,877    | \$1,752,664   | \$50,132     | \$2,270,097   |
| AAEQ NED Costs                        | \$1,460,817  | \$1,970,059  | \$1,381,679  | \$9,133,218   | \$1,458,226  | \$15,404,000  |

| Table | Table 10: TSP Economic Summary (AEQ) |              |              |                      |      |  |  |  |  |  |  |
|-------|--------------------------------------|--------------|--------------|----------------------|------|--|--|--|--|--|--|
|       | Sub-Reach                            | NED Benefits | NED Costs    | Net Benefits         | BCR  |  |  |  |  |  |  |
|       | CL                                   | \$1,478,799  | \$1,460,817  | \$1,460,817 \$17,982 |      |  |  |  |  |  |  |
|       | WSJB1                                | \$2,532,702  | \$1,970,059  | \$562,643            | 1.29 |  |  |  |  |  |  |
|       | WSJB2                                | \$10,029,970 | \$1,381,679  | \$8,648,291          | 7.26 |  |  |  |  |  |  |
|       | WSJB3                                | \$62,965,473 | \$9,133,218  | \$53,832,254         | 6.89 |  |  |  |  |  |  |
|       | WSJB4                                | \$2,418,761  | \$1,458,226  | \$960,535            | 1.66 |  |  |  |  |  |  |
|       | TSP Total                            | \$79,425,705 | \$15,404,000 | \$64,021,704         | 5.2  |  |  |  |  |  |  |