NFEnergía LLC SAN JUAN MICRO-FUEL HANDLING FACILITY RESOURCE REPORT 13—ENGINEERING AND DESIGN MATERIAL

I.1 EARTHQUAKES

Document Number	Document Title	Appendix Security
	Probabilistic Seismic Hazard Analysis and Site- Specific Response Spectrum	Public

I.2 TSUNAMI AND SEICHE

Document Number	Document Title	Appendix Security
	San Juan Tsunami Evacuation Map	Public

I.3 HURRICANES AND OTHER METEOROLOGICAL EVENTS

Document Number	Document Title	Appendix Security
HSEQ-P220	Hurricane and Severe Weather Procedure	CEII

I.4 TORNADOS

See Appendix 13.I.3 for meteorological event procedures. Wind speed design and criteria are discussed in Moffatt and Nichol Basis of Design included in Appendix 13.B.1.

I.5 FLOODS

Flood Data for the MFH Facility is provided in Moffatt and Nichol Basis of Design included in Appendix 13.B.1.

I.6 RAIN, ICE, AND SNOW

Rain Data for the MFH Facility is provided in Moffatt and Nichol Basis of Design included in Appendix 13.B.1. Ice and snow data was not explicitly included in the design of the MFH Facility.

J.1 TOPOGRAPHIC MAP

Document Number	Document Title	Appendix Security
	Topographic Contour Map	Public

J.2 BATHYMETRIC CHART

A Bathymetric Chart for the MFH Facility is provided in Moffatt and Nichol Basis of Design included in Appendix 13.B.1.

J.3 CLIMATIC DATA

Climatic Data for the MFH Facility is provided in Moffatt and Nichol Basis of Design included in Appendix 13.B.1.

J.4 GEOTECHNICAL INVESTIGATION

Document Number	Document Title	Appendix Security
	Report on the Geotechnical Exploration Performed At The Site Of The Proposed NFE Microfuel Handling Facility Puerto Nuevo Wharf, San Juan, Pr	Public
B-101	Boring Location Plan	CEII
B-601	Boring Logs (1 of 8)	CEII
B-602	Boring Logs (2 of 8)	CEII
B-603	Boring Logs (3 of 8)	CEII
B-604	Boring Logs (4 of 8)	CEII
B-605	Boring Logs (5 of 8)	CEII
B-606	Boring Logs (6 of 8)	CEII
B-607	Boring Logs (7 of 8)	CEII
B-608	Boring Logs (8 of 8)	CEII

J.5 FOUNDATION RECOMMENDATIONS

Recommendations from the Seismic Hazard Analysis (13.I.1) have been implemented in the Moffatt & Nichol foundation design. The Geotechnical Report in Appendix 13.J.4 includes design recommendations as well.

J.6 STRUCTURAL DESIGN BASIS AND CRITERIA

See Moffet and Nichol Design Basis in Appendix 13.B.1 and Civil Specification in Appendix 13.F.1.

J.7 STRUCTURAL DRAWINGS AND CALCULATIONS

Document Number	Document Title	Appendix Security
	Structural Report - Suction Drum	CEII
	Structural Report - Impoundment and Trench	CEII
	Structural Notes (1 of 2)	CEII
S-001	Structural Notes (2 of 2)	CEII
S-002	Structural Framing Key Plan	CEII
SF-101	Framing Plan (1 of 3)	CEII
SF-111	Framing Plan (2 of 3)	CEII
SF-112	Framing Plan (3 of 3)	CEII
SF-113	Hose Tower Framing Details (1 of 9)	CEII
SF-501	Hose Tower Framing Details (2 of 9)	CEII
SF-502	Hose Tower Framing Details (3 of 9)	CEII
SF-503	Hose Tower Framing Details (4 of 9)	CEII
SF-504	Hose Tower Framing Details (5 of 9)	CEII
SF-505	Hose Tower Framing Details (6 of 9)	CEII
SF-506	Hose Tower Framing Details (7 of 9)	CEII
SF-507	Hose Tower Framing Details (8 of 9)	CEII
SF-508	Hose Tower Framing Details (9 of 9)	CEII
SF-509	Truck Loading Bridge Framing	CEII
SF-510	Truck Loading Bridge Structures	CEII
SF-511	Equipment Connection Details	CEII
SF-512	Reel Connection Details	CEII
SF-513	Framing Details	CEII
SF-514	Pipe Rack 1 - Framing Plan (1 of 3)	CEII
SF-520	Pipe Rack 1 - Framing Plan (2 of 3)	CEII
SF-521	Pipe Rack 1 - Framing Plan (3 of 3)	CEII
SF-522	Pipe Rack 2 - Framing Plan (1 of 3)	CEII
SF-523	Pipe Rack 2 - Framing Plan (2 of 3)	CEII
SF-524	Pipe Rack 2 - Framing Plan (3 of 3)	CEII
SF-525	Pipe Rack 3 - Framing Plan (1 of 3)	CEII
SF-526	Pipe Rack 3 - Framing Plan (2 of 3)	CEII
SF-527	Pipe Rack 3 - Framing Plan (3 of 3)	CEII
SF-528	Pipe Rack 4 - Framing Plan (1 of 3)	CEII
SF-529	Pipe Rack 4 - Framing Plan (2 of 3)	CEII
SF-530	Pipe Rack 4 - Framing Plan (3 of 3)	CEII
SF-531	Pipe Rack 1 - Framing Elevation (1 of 2)	CEII
SF-532	Pipe Rack 1 - Framing Elevation (2 of 2)	CEII
SF-533	Pipe Rack 2 - Framing Elevation	CEII
SF-534	Pipe Rack 3 - Framing Elevation	CEII
SF-535	Pipe Rack 4 - Framing Elevation	CEII
SF-536	Pipe Rack - Sections (1 of 4)	CEII
SF-537	Pipe Rack - Sections (2 of 4)	CEII
SF-538	Pipe Rack - Sections (3 of 4)	CEII
SF-539	Pipe Rack - Sections 41 of 4)	CEII
SF-540	Cable Tray Support	CEII
SF-541	Side Shield Details	CEII

PUBLIC San Juan Micro-Fuel Handling Facility Resource Report 13—Engineering and Design Material

Document Number	Document Title	Appendix Security
SF-542	Suction & K.O. Drum Platform Framing Plans	CEII
SF-543	BOG Compressor Platform Framing Plan	CEII
SF-544	Platform Framing Sections (1 of 4)	CEII
SF-545	Platform Framing Sections (2 of 4)	CEII
SF-546	Platform Framing Sections (3 of 4)	CEII
SF-547	Platform Framing Sections (4 of 4)	CEII
SF-548	Pipe Support Details (1 of 6)	CEII
SF-550	Pipe Support Details (2 of 6)	CEII
SF-551	Pipe Support Details (3 of 6)	CEII
SF-552	Pipe Support Details (4 of 6)	CEII
SF-553	Pipe Support Details (5 of 6)	CEII
SF-554	Pipe Support Details (6 of 6)	CEII
SF-555	F&G Device Support Details	CEII
SF-557	Base Plate Details (1 of 4)	CEII
SF-560	Base Plate Details (2 of 4)	CEII
SF-561	Base Plate Details (3 of 4)	CEII
SF-562	Base Plate Details (4 of 4)	CEII
SF-563	BOG Platform Sections (1 of 3)	CEII
SF-564	BOG Platform Sections (2 of 3)	CEII
SF-565	BOG Platform Sections (3 of 3)	CEII
SF-566	Typical Steel Details (1 of 2)	CEII
SF-591	Typical Steel Details (2 of 2)	CEII

J.8 FOUNDATION DRAWINGS

Document Number	Document Title	Appendix Security
S-001	Structural Notes (1 of 2)	CEII
S-001	Structural Notes (2 of 2)	CEII
SB-101	Foundation Key Plan	CEII
SB-110	Foundation Plan (1 of 4)	CEII
SB-111	Foundation Plan (2 of 4)	CEII
SB-112	Foundation Plan (3 of 4)	CEII
SB-113	Foundation Plan (4 of 4)	CEII
SB-401	Enlarged Pile Plan (1 of 5)	CEII
SB-402	Enlarged Pile Plan (2 of 5)	CEII
SB-403	Enlarged Pile Plan (3 of 5)	CEII
SB-404	Enlarged Pile Plan (4 of 5)	CEII
SB-405	Enlarged Pile Plan (5 of 5)	CEII
SB-410	Enlarged Pipe and F&G Device Support Layout Plan (1 of 8)	CEII
SB-411	Enlarged Pipe and F&G Device Support Layout Plan (2 of 8)	CEII
SB-412	Enlarged Pipe and F&G Device Support Layout Plan (3 of 8)	CEII
SB-413	Enlarged Pipe and F&G Device Support Layout Plan (4 of 8)	CEII
SB-414	Enlarged Pipe and F&G Device Support Layout Plan (5 of 8)	CEII

PUBLIC San Juan Micro-Fuel Handling Facility Resource Report 13—Engineering and Design Material

Document Number	Document Title	Appendix Security
SB-415	Enlarged Pipe and F&G Device Support Layout Plan (6 of 8)	CEII
SB-416	Enlarged Pipe and F&G Device Support Layout Plan (7 of 8)	CEII
SB-417	Enlarged Pipe and F&G Device Support Layout Plan (8 of 8)	CEII
SB-418	Enlarged Plan - Boil Off Gas Compressor	CEII
SB-430	Canopy Foundation Plan	CEII
SB-501	Gate Arm Foundation	CEII
SB-502	Foundation Details	CEII
SB-521	Truck Loading Suction Drum Foundation	CEII
SB-522	Truck Loading Pump Skid Foundation	CEII
SB-523	LNG Pump Skid Foundation	CEII
SB-524	Air & N2 Equipment Foundation	CEII
SB-525	Gas Combustion Unit Foundation	CEII
SB-526	Stand By Generator Foundation	CEII
SB-527	Electrical Transformer Foundation	CEII
SB-528	Drain Drum and GCU Knock Out Drum Foundation	CEII
SB-529	Glycol Water Loop Pump Skid Foundation	CEII
SB-530	Metering Skid Foundation	CEII
SB-531	Boil Off Gas (BOG) Compressor Foundation	CEII
SB-532	Gas Fired Vaporizer Foundation	CEII
SB-533	Make-up Water Tank Foundation	CEII
SB-534	Shell and Tube Foundation	CEII
SB-535	Regasification Suction Drum Foundation	CEII
SB-536	Gas Fire Vaporizer Foundation Sections	CEII
SB-537	Make-up Water Pump Foundation	CEII
SB-538	LIN Ambient Air Vaporizer Foundation	CEII
SB-539	LNG Ambient Air Vaporizer Foundation	CEII
SB-540	Support Details (1 of 2)	CEII
SB-541	Support Details (2 of 2)	CEII
SB-547	Canopy Foundation Details	CEII
SB-548	Vapor Barrier Details	CEII
SB-560	Truck Loading Skid & Truck Scale Foundation (1 of 5)	CEII
SB-561	Truck Loading Skid & Truck Scale Foundation (2 of 5)	CEII
SB-562	Truck Loading Skid & Truck Scale Foundation (3 of 5)	CEII
SB-563	Truck Loading Skid & Truck Scale Foundation (4 of 5)	CEII
SB-564	Truck Loading Skid & Truck Scale Foundation (5 of 5)	CEII
SB-566	Miscellaneous Equipment Connection Details	CEII
SB-571	Pipe Rack Type I & Type III Foundations	CEII
SB-572	Pipe Rack Pedestals Type I, II, III	CEII
SB-573	Pipe Rack Pedestals Type IV & V	CEII
SB-574	Pipe Rack Types II and Type VIII Foundations	CEII
SB-575	Containment Area Mat Foundation Details	CEII

Document Number	Document Title	Appendix Security
SB-576	Truck Loading Pipe Birdge Type I Foundation	CEII
SB-578	Truck Loading Pipe Birdge Type II Foundation	CEII

NFEnergía LLC SAN JUAN MICRO-FUEL HANDLING FACILITY RESOURCE REPORT 13—ENGINEERING AND DESIGN MATERIAL

S.4 PASSIVE PROTECTION DRAWINGS

Document Number	Document Title	Appendix Security
	Brochure - FOAMGLAS PFS System Gen 2	Public

Appendix I.1

TERRATEC, Inc. Consultants in Foundations and Earth Structures. Geology, Geophysics, and Environmental Engineering

NFE-V-08 DEVELOPMENT SAN JUAN, PUERTO RICO.

PROBABILISTIC SEISMIC HAZARD ANALYSIS AND SITE-SPECIFIC RESPONSE SPECTRUM

Submitted to:

Jaca & Sierra

Submitted by:

TerraTec, Inc.

J. G. Paniagua, PhD. President Jose M. Lockhart, MS. PE. Earthquake Engineering Consultant

uaqua,

J. Guillermo Paniagua, PhD., P.E. President PR Lic. # 25360

José M. Lockhart, MS, SE, PE Associate

February, 2018

TABLE OF CONTENT

TITLE		PAGE NO.
1	INTRODUCTION	1
2	REGIONAL GEOLOGY AND SEISMOTECTONICS	4
3	SEISMIC SOURCE MODEL FOR THE CARIBBEAN REGION	8
4	SEISMIC SOURCES OF PR	21
5	PROBABILISTIC SEISMIC HAZARD ANALYSIS	24
6	SITE RESPONSE ANALYSES	27
7	SITE CATEGORIZATION	32
8	SITE-SPECIFIC RESPOSE SPECTRUM	33
10	REFERENCES	42

LIST OF FIGURES

FIG.	PAGE NO.	
1.	PUERTO RICO ISLAND MAP	2
2.	PROJECT LOCATION	3
3.	SAN JUAN QUADRANGLE	7
4.	MAIN SEISMIC HAZARDS	21
5.	SEISMIC SOURCES	22
6.	UNIFORM HAZARD SPECTRUM (UHS)	26
7.	BORING LOG SWV-1, 7a/7b/7c	27/29
8.	SHEAR WAVE VELOCITY	31
9.	SEISMIC HAZARD DEAGGREGATION, 9a/9b/9c	35/36
10.	UHS SPECTRUM	37
11.	RISK-TARGETED UHS	37
12.	SITE-SPECIFIC SSE RESPONSE SPECTRA	39

13.	SITE-SPECIFIC OBE RESPONSE SPECTRA	41
14.	REFERENCES	42
LIST	OF TABLE	
TABI	LE NO.	
1.	SEISMIC SHEAR WAVE VELOCITIES	17
2.	SEISMIC SOURCES	34

3.	CONDITIONAL MEAN RESPONSE SPECTRA	39

4.	SITE SEISMIC CATEGORIZATION	40
5.	PEER GROUND MOTIONS	41
6.	SITE-SPECIFIC RESPONSE SPECTRUM	44
7.	SITE-SPECIFICDESIGN RESPONSE SPECTRUM	46

APPENDICES

APPENDIX 1. PROBABILISTIC SEISMIC HAZARD ANALYSIS APPENDIX 2. RESPONSE SPECTRUM MATCHING APPENDIX 3. GEOTECHNICAL & GEOPHYSICAL SURVEYS APPENDIX 4. SEISMIC SOURCES MODELS APPENDIX 5. SITE RESPONSE APPENDIX

1 INTRODUCTION

The US Commonwealth Puerto Rico (Fig. 1) is a country with one of the highest population density in the world with approximately 4,000,000 people and a land area of only 8,959 square km. Puerto Rico Island is surrounded by very active offshore seismic sources. In the past the seismic hazard analyses for PR included only offshore seismogenic structures such as Puerto Rico Trench northern PR, Los Muertos Trough southern PR, and Anegada Passage and La Mona Passage to the east and west of the island, respectively. Recent paleoseismology and paleoliquefaction studies (Prentice et al., 2000; Tuttle et al., 2007; Piety et al., 2018) show the existence of active inland Holocene seismogenic structures capable of triggering damaging earthquake in PR. These earthquake hazards associated with a high population concentration define a high seismic risk scenario for Puerto Rico.

The 1985 Mexico earthquake with epicenter located off the Pacific coast of Michoacan at a distance of 350 km from Mexico City, has been considered one of the most devastating earthquake in the history of the Americas. One of the lessons learned from this earthquake is that site-specific soil conditions may play an important role in the magnification of earthquake intensity at places located at great distances from the seismic source.

The ongoing understanding of the Caribbean region tectonic has brought the development of new tectonic models and predictive ground motion relations, which improve the accuracy and reduce the uncertainties in the Probabilistic Seismic Hazard Assessment of Puerto Rico.

The PSHA for the NFE-V-08 DEVELOPMENT project site, in San Juan, PR, incorporates the recent advances in the modeling of Puerto Rico seismic sources and Site-specific Ground Motion Response prediction, and includes all seismic sources within 200 km from the project site.

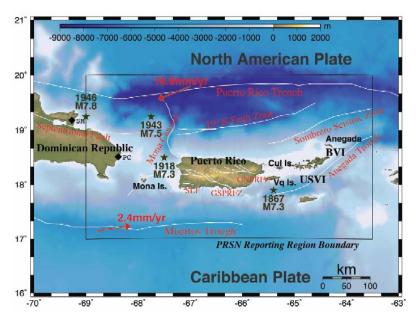


Fig. 1. Puerto Rico Island

Puerto Rico geology presents young sediments comprising layers of alluvial sand. Previous liquefaction potential analysis using the standard cyclic stress procedure for alluvial terraces similar to the soil deposits found in the city of San Juan have shown that these soils would liquefy when subjected to ground motion shaking of the intensities expected at the site. As per ASCE 7-16, the presence of soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, defines the site as Class F. The ASCE 7-16 enforces the development of site-specific response spectra for site class F in accordance to Section 11.4.7, and Chapter 21 (ASCE 7-16). Essential facilities such as power plants form part of a community's infrastructure that must remain operational or can be restored quickly after an earthquake for a community to respond effectively. Thus, site-specific seismic hazard studies are strongly recommended for planning, design and construction of all essential facilities in earthquake prone countries. In the particular case of the NFE-V-08 DEVELOPMENT project, the RFP provided by the developer calls for a probabilistic seismic hazard analysis for the project site, including site-specific response spectra for 0.5 %, 2.0 %, 5.0%, 10.0 % and 20.0 % damping.

This report provide site-specific response spectra for 0.5 %, 2.0 %, 5.0%, 10.0 % and 20.0 % damping, and recommends ground motion parameters to properly carry out the dynamic structural analyses and seismic design of the NFE-V-08 DEVELOPMENT

project, in compliance with ASCE 7-16, and PR Building Code. Site geological hazards are not part of the scope of work of this report.

The NFE-V-08 DEVELOPMENT project comprises a complex of energy generation facilities at berths A, B and C, in Puerto Nuevo Wharf, San Juan, Puerto Rico. The project is located at the geographical coordinates 18°25'44.67"N and 66° 6'15.99"W, in San Juan, Puerto Rico. The map below shows the location of the project site (Fig. 2).

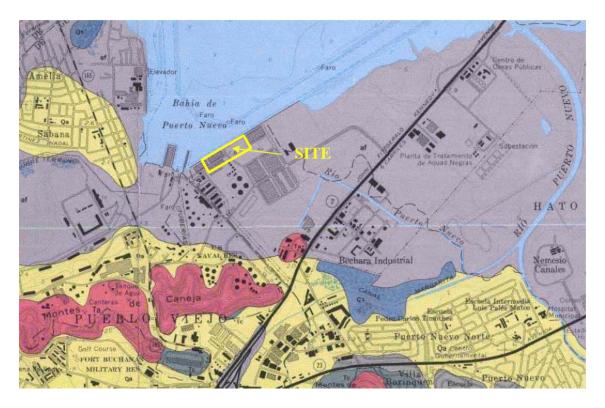


Fig. 2. The NFE-V-08 DEVELOPMENT Project Site

2 REGIONAL GEOLOGY AND SEISMOTECTONICS

2.1 **REGIONAL TECTONIC SETTING**

Puerto Rico Island is located on the boundary between the Caribbean Sea and the Atlantic Ocean as the connecting link between the Greater and Lesser Antilles islands. The Greater and Lesser Antilles islands delimit the boundary between the North American and Caribbean tectonic plates. The North American plate moves west-southwestward relative to the Caribbean plate at a rate of approximately 19.4 mm/yr (Jansma el al., 2000). West of Puerto Rico these two plates move along typical transform structures. On northeastern Puerto Rico the North American plate subducts westward beneath the Caribbean plate, forming the volcanic island arc of Lesser Antilles. Tectonic plate interaction occurs in a 250-kilometer-wide, and an east-west-trending zone of complex transpressional deformation, delimited by the Puerto Rico trench in the north and the Muertos trough in the south (Frankel et al., 2003). The Mona Passage in the west, and Anegada Trough in the east, in transtensional deformation regimes, act as transfer mechanisms between Puerto Rico trench and Los Muertos through. Puerto Rico Island lies on a shallow submarine bank within this complex deformational zone.

Slow subduction of the North America plate beneath the leading edge of the Caribbean plate dominates the tectonic environment of northeastern Caribbean. To the north and east lies the west-southwesterly moving North American plate, locally represented by the floor of the Atlantic Ocean and the Bahamas platform. To the south and west lie the various basins of the Caribbean Sea, within the rigid Caribbean plate. The Puerto Rico-Virgin Islands platform is part of an arc massif along the northeast fringe of the Caribbean plate. It straddles and is cut by major tectonic and seismically active features that form the boundary zone between the major plates (LaForge and McCann, 2005).

The Puerto Rico trench and the Los Muertos trough bound the Puerto Rico microplate to the north and south, respectively. Motion along these features reflects oblique convergent slip between the major plates and the Puerto Rico microplate. To the east, the micro plate ends in a wide zone of NE-SW direct transtension in western Puerto Rico, Mona Passage, and the eastern Dominican Republic (Van Gestel et al., 1998). To the west, its margin lies at the extensional Anegada trough (Litgow et al., 1987). Deformation in the Mona Passage and Anegada trough occurs along the edges of microplates within the plate boundary zone (Byrne et al., 1985), and serves to transfer slip from the Los Muertos trough to the Puerto Rico trench. Two active faults presumable related to the

Mona Passage deformation have been identify on land in western Puerto Rico (Mann and Prentice, 2001; Prentice et al., 2003).

Because the North America plate motion is nearly parallel to the Puerto Rico trench (Calais et al., 2002), a number of transtensional features have developed in the accretionary wedge above the downgoing North America plate. The most important of these features are the Septentrional fault and the Bowing fault zone. In Central Hispaniola, the Septentrional fault exhibits a slip rate of 8 ± 5 mm/year (Calais, 2006) and accounts for a significant proportion of the relative plate motion. To the east, however, this rate decreases by an unknown amount because of the presence of similar features that serve the same function. The Bowin fault zone lies on the east side of the Mona Canyon, adjacent to the east end of the Septentrional fault. In addition to these seismogenic features, ground-shaking hazards are also represented by upper crustal randomly subduction earthquakes not associated with known structures (LaForge and McCann, 2005).

Historical and instrumental records account for the seismicity of Puerto Rico. Major earthquakes have occurred in Puerto Rico several times during the past 500 years. These earthquakes struck and damaged Puerto Rico in 1520, 1615, 1751, 1776, 1787 (magnitude ~8.0, Puerto Rico Trench); 1867 (~7.3, Anegada Passage), 1918 (~7.5, Mona Passage); 1943 (~7.7, plate interface, Puerto Rico Trench); and 1946 (~8.0, plate interface, northeastern Hispaniola).

The seismicity of Puerto Rico is basically related to the subduction of the North American plate interface with the Caribbean plate south of the Puerto Rico Trench, and to the interactions of several probable microplates within the complex boundary zone. Using geodesy and seismicity data it can be assumed the existence of a Puerto Rico microplate that is relatively rigid and seismically quiescent internally (USGS 2003). The majority of seismogenic sources in Puerto Rico are concentrated offshore. The Great Northern and Great Southern Puerto Rico faults, major left-lateral strike-slip systems, were considered inactive until recently (Prentice, 2002; Tuttle, 2007).

Megathrust faulting along the plate interface; intraslab faulting within the subducting North American plate; and strike-slip faulting along several structures, including the Septentrional fault, which is the main plate boundary structure in central Hispaniola; and the North and South Puerto Rico Slope fault zones and related structures, are associated to deformation along North American and Caribbean plates. Other seismic sources are area sources related to microplate interactions, such as the Mona Passage, on the west of

Puerto Rico, and the Anegada passage on the east. In addition to the tectonic features on the limits, other onshore seismic sources include Great Puerto Rico North fault, Great Puerto Rico South fault, and related structures, and the Lajas fault in southeastern Puerto Rico.

It has been reported the existence of at least two faults in San Juan area inferred to have been active in the late Tertiary (2.58 million years ago) (Kaye, C.A., 1959). The United States Nuclear Regulatory Commission (USNRC), NUREG/CR-7320, "Seismic Design Standards and Calculational Methods in the United States and Japan", defines an active fault as a fault with observed movement or seismic activity in the last 130,000 yr. Thus, based on the preceding definition of active fault, it can be concluded that there is no active fault in the San Juan quadrangle, which is the location of NFE-V-08 DEVELOPMENT project site.

2.2 LOCAL GEOLOGIC SETTING

In Puerto Rico Island, surficial deposits of sediment that have eroded off the Cordillera Central and the mogotes cover the area lying between the mountains and the coastline. Coastal plains are better developed on the northern side of the island due to greater rates of erosion caused by higher rainfall. The coast itself is characterized by beaches and mangrove swamps.

Tertiary limestone, together with aerially extensive Quaternary sediments deposited by fluvial, marine, and eolian processes, underlain the northern coastal plain of Puerto Rico. Residual clayey soils and weathered saprolite cover most of bedrock units. Quaternary sediments include sands, clayey sands, sand and gravel, soft organic clay, silty clay, peat, and calcareous mud that accumulated in streams, beaches, lagoons, estuaries, and swamps. Eolian sands also are deposited along the coastline and increase the sand component of the swamps and estuarine deposits near the beach. Much of the built-up areas of San Juan along lagoon or coastal margin were formed by artificial filling that locally included sluicing of hydraulic fill.

Based on the geological mapping of Pease and Monroe (1977), aerial photograph interpretation and field reconnaissance, the Quaternary geologic history of the San Juan metropolitan area involves extensive erosion of materials from the highlands and deposition of alluvium and alluvial fan complexes along the stream systems and slopes. These deposits intermingle with coastal lagoon deposits and beach-eolian sands on the coastal plain. A combination of sea-level change and regional tectonic uplift caused

Holocene river channels to incise deeply into broad Pleistocene flood plains. Holocene deposits generally appear confined to the incised channel systems, beach, estuary, and lagoon environments.

In addition to regional tectonic uplift, Quaternary sea-level fluctuation have changed stream base levels and have influenced the development of stream systems and deposition of sediments along the northern coastal plain. Coastal stream were incised and graded to lower base levels during low stands of sea level. Paleovalleys that formed during sealevel low stands were drawn and filled as sea level rose to its present elevation through the Holocene. Former beach sands were blown into dunes and sand sheets against hillsides and within topographic depressions. The bay and estuary deposits of Bahia San Juan and Laguna San Jose, and alluvial deposits shed from coastal mountains, now blanket most of the low-lying landscape. Swamps and mangroves that formed at lower stands of sea level were drowned and are now marked by buried, preserved peat layers within the bay and estuary deposits.

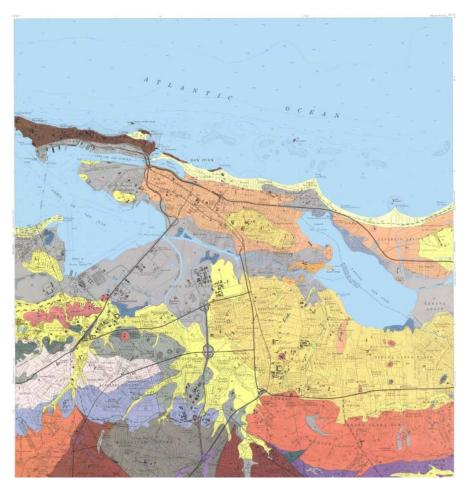


Fig. 3. San Juan Quadrangle (MH Pease Jr and WH Monroe, 1977)

3 SEISMIC SOURCES. SEISMIC SOURCE MODEL FOR THE CARIBBEAN REGION

The Caribbean region tectonic regime is an ongoing complex dynamic process within different seismotectonic and geologic environments, including all sort of plate boundaries such as transform, convergent, oblique-convergent, and divergent boundaries in oceanic and continental crust. The Caribbean plate is moving east-northeastward relative to North America and South America plates at a rate of about 20 mm/yr. Crust and oceanic material of the Caribbean plate underlain most of the Caribbean region. At Northeastern Caribbean major seismic sources are located at the plate boundary zones where the Caribbean plate motion is being accommodated. Here the Bahama carbonate banks subducts beneath Hispaniola and Puerto Rico with an oblique-convergent motion. This oblique-convergent motion is partitioned between the North Hispaniola Deformation Belt thrust fault and the Septentrional and Enriquillo-Plantain-Garden left-lateral strike-slip faults onshore the Dominican Republic and Haiti. North-dipping subduction of the Caribbean plate is undergoing beneath southern Hispaniola and Puerto Rico where the convergent motion is being accommodated by Los Muertos Deformation Belt.

The seismic source model incorporated in EZ-FRISK computer code (William Lettis & Associates, 2015) and used for the Probabilistic Seismic Hazard Analysis of the NFE-V-08 DEVELOPMENT Project site, in San Juan, Puerto Rico, includes documentation for areal source zones for shallow crustal provinces and fault sources that represent the specific tectonic features within a radius of 200 km from the location of the project site (Fig.4). Three types of fault sources are included: shallow crustal faults, subduction interface zones, and subduction intraplate zones. Line sources represent crustal faults with characteristic earthquake distributions. Gently dipping line sources provide for subduction interface zones with truncated exponential distributions. Intraplate subduction fault zones are represented by dipping lines sources with exponential distributions.

The "Summary of Methodology for Source Model Development. Caribbean Seismic Risk Assessment" (William Lettis & Associates, 2006), is included here in extenso as follows (Appendices cited in the following WLA Seismic Source Model description are not included in this report):

Subduction Sources

Subduction zone related earthquakes are modeled as three types of seismic sources: (1) characteristic "great" earthquakes (i.e. M>8) caused by thrust motion on the dipping interface between the oceanic plate and the over-riding continental crust (modeled as planar dipping fault sources and referred to as the plate interface zone); (2) earthquakes originating along the shallow part of the subduction fault (i.e. 10 to 40 km), and (3) deep earthquakes within the subducted oceanic slab (referred to as intraplate" or "slab" events). The first two types of sources are combined, and earthquake recurrence within these sources is characterized by a truncated exponential distribution. Earthquakes of lesser magnitude than the characteristic "great" earthquakes include shallow events within the descending oceanic slab and smaller plate interface events (so-called "patch" events).

The intraplate, or slab, sources include deep (about 40 to 200 km depth) earthquakes that occur within the subducted slab down dip of the plate interface. Earthquake recurrence within this source is assumed to have an exponential distribution.

Regional seismological and geodetic studies indicate that the subduction zones in the western, eastern, and northwestern margin of the Caribbean Plate have complex geometries that locally change along their length. The geometries of the subduction zones used in the source model are based on analyses of our composite seismicity catalog (see Appendix G for description), and seismological and geodetic analyses presented in scientific literature (Appendix A). There are 18 separate subduction zone segments on the interface portion (Appendix C). The subduction zone segments were defined based on occurrence of large magnitude historical earthquakes, difference in the geometry (strike and dip) of the subducted plate, difference in age of the subducting plates, and presence of physical asperities such as seamounts chains and oceanic fracture zones.

Plate interface sources

Slip rates along the plate interface zones were estimated taking into consideration the overall plate motion rate, plate-normal component motion, and amount of seismic coupling or the seismic efficiency along the plate interface. Plate motions were derived from published vectors determined by local GPS geodetic networks, global plate motion models (e.g., NUVEL 1-A) or GPS- based global plate motion models obtained through the UNAVCO web-based plate motion calculator (e.g., REVEL2000; Sella et al., 2002). The plate-normal component of the relative horizontal plate-motion vector was used to estimate the slip rate on the plate interface. This reflects the general assumption that only

the plate-normal component accumulates strain to be released in great earthquakes, while the plate margin-parallel component of motion is partitioned onto shallow crustal sources. The slip rate on the plate interface also was corrected to account for the observation that only a fraction of the measured relative plate motion goes into producing the elastic strain energy that is released by earthquakes. The proportion of strain accumulated on the plate interface relative to the total possible strain is described by the seismic coupling coefficient (Pacheco et al., 1993). We estimated seismic coupling coefficients based on published values derived from historical seismicity or elastic models constraint by geodetic data. The seismic coupling coefficient is a major source of uncertainty in our final slip rate values.

The maximum earthquake magnitude distribution for the plate interface events is based on two or three potential fault rupture scenarios (characteristic earthquakes) for each subduction zone segment. The final selection of the magnitude values in the distribution is based on the available data and judgment that the distribution reflects a realistic and reasonable range of values given the historical seismological record and physical characteristic of the subduction zone segment. Factors considered in the analysis of maximum magnitude include: (a) the minimum size of the rupture area based on the maximum historical rupture area for each segment; (b) uncertainties in the rupture length and width; (c) presence of physical features on the subducting plate (i.e. fracture zones) that could act as rupture termination points; and (d) the possibility of rupture larger than historical maximums could occur. For instances where the length of the subduction zone segment exceeds the predicted rupture length from the characteristic earthquake, we consider that characteristic earthquake to "float" or occur anywhere along the interface zone.

The recurrence intervals were estimated for each maximum magnitude estimate on each plate interface segment. The recurrence was calculated by dividing seismic moment (M_o) of each characteristic earthquake by moment rate, where moment was calculated directly from the relationship between M_o and M_w , and moment rate is calculated as the product of the effective slip rate, shear modulus, and specific area of each characteristic earthquake. These estimated recurrence intervals were compared to the historical earthquake catalog to help guide estimates of M_{max} and seismic coupling.

The recurrence interval estimates for the "patch" earthquakes were based on the magnitude-frequency distribution of historical events occurred within the volume of crust along the plate interface. The volume is defined as the length of the segment, the

horizontal width from the trench to the interface/intraplate zone boundary, and the depth interval from zero to the interplate/intraplate zone boundary (typically about 40 km). All events within this volume are conservatively assumed to occur on the plate interface. This approach is necessary because the event location uncertainties are too large to distinguish between true plate interface events, shallow upper-plate events, or events within the shallow portion of the subducting slab.

Intraplate (or slab) sources

Earthquake recurrence on intraplate sources is modeled as an exponential magnitude distribution. The maximum earthquake magnitude estimates for the intraplate events are based both on recorded seismicity, examples from similar tectonic settings, and the physics behind the earthquake generating mechanisms in these environments. The historical magnitude-frequency distribution for the intraplate source zone is determined for those events occurring within the volume of crust defined by the map projection of the intraplate zone and extending from the base of the shallow crust (e.g., 40 km) to the maximum depth of recorded earthquakes inferred to be associated with the subducted slab (typically about 200 km). These events are conservatively assumed to occur along the plane representing the top of the subducted slab.

Shallow Crustal Source Zones

The seismic source model for the shallow crust (i.e. < 20 km) includes 43 areal source zones and 93 line sources (Appendices D and E). The areal source zones represent parts of the region with similar tectonic and seismologic characteristics. Definition of the areal source zones was based on examination of spatial patterns of topography, fault locations and kinematics, and historical seismicity. Input parameters for areal sources include: (1) source location; (2) depth of earthquake occurrence; (3) style of faulting; and (4) maximum earthquake magnitude (M_{max}) distribution and weights. The subsurface rupture length vs magnitude relation (all earthquake types) developed by Wells and Coppersmith (1994) was recommended for all zones, and estimated rupture lengths and aspect ratios were calculated for all M_{max} values.

The recurrence model for the areal source zones is based on the historical magnitude frequency distribution for events occurring within the volume of crust defined by the areal

source zone boundary and extending from the surface to the base of the shallow crust (~40 km). These events are conservatively assumed to occur on structures within an areal source volume that is commonly much shallower (e.g., 0 to 12 km) than the area of sampled seismicity.

Upper plate line sources, or fault sources, included in the model are from the published literature (Appendix A). The faults included in the model are only those that meet the criteria of having a reported slip rate of 0.2 mm/yr or higher. Slip rates attributed to these line sources are based on the published rate or a rate estimated based on regional geodetic networks or analogy with similar faults of known slip rate.

Input parameters for upper plate line sources include: (1) source location; (2) dip, dip direction, and maximum depth; (3) style of faulting; and (4) maximum earthquake magnitude distribution and weights. The subsurface rupture length vs magnitude relation (all earthquake types) developed by Wells and Coppersmith (1994) was recommended for all zones. Maximum magnitudes and weights for the line sources were based on historical seismicity, fault length versus magnitude relationships, and judgment. Estimated rupture lengths and aspect ratios were calculated for all M_{max} values. For instances where the line source exceeds the predicted rupture length, we consider that characteristic earthquake to "float" or occur anywhere along the line source.

Earthquake Catalog and Aftershock Removal

The earthquake catalog was compiled by WLA's subcontractor, geoForecaster. A description of the catalog sources and conversion to moment magnitude (Mw) is presented in their report in Appendix G. Aftershock removal was performed by WLA's subcontractor, Lahontan Geosciences. Aftershocks were removed using the computer code CLUSTER2000 (Reasonberg, 1985) separately on three subcatalogs consisting of subduction zone plate interface sources, intraplate (slab) sources, and upper plate (areal) sources. Upper plate seismicity was defined as events less than or equal to 40 km depth that are located outside plate interface source zones. CLUSTER2000 uses magnitude-dependent time and distance parameters that determine whether an event should be included in an aftershock "cluster." The time and distance parameters were adjusted iteratively until visual inspection of large earthquakes and comparisons of pre- and postdeclustering indicated that sufficient aftershocks were removed. The declustered

earthquake catalogs were further divided into subduction zone and areal sources and submitted electronically to Risk Engineering, Inc.

REMOVAL OF DUPLICATE EVENTS

We use an automated system to remove duplicate events in our catalog compilation. The program looks for similarities in time, location, and magnitude to score successive events as duplicates. Removal of duplicates is then done through a prioritization of the reporting agencies. International or global data collection agencies that provide their own locations often use a global velocity model to determine locations. While this may be satisfactory on a global scale, it may lead to serious location errors on a local scale. In this case we also look at local network distribution and integrity in keeping some events and not others. Once the automated system is run, we also do a quick manual check to insure that duplicates are removed.

AFTERSHOCKS

Generally, we do not remove aftershocks from catalog searches. There are two reasons for this. First, computer codes that remove aftershocks based on the Omori law of aftershock decay or declustering algorithms often leave a "hole" in the catalog. A space time plot of aftershocks removed from earthquake catalogs will clearly show boxed periods of no activity. In essence, these automated codes remove every single event including background seismicity after the main shocks are identified. [It should be noted that many seismologists consider background seismicity as a superposition of long, drawn-out aftershock sequences]. Second, aftershocks can be just as damaging as some of the background seismicity and are just as important to engineering structures in terms of vulnerability. In many cases it is the aftershocks which bring buildings to a total collapse after the initial damage from a main shock. To date, there is no consensus among seismologists or engineers as to whether aftershocks should be included in the seismic hazard studies. However, since many hazard studies consider earthquakes occurrence as a Poissonian process then dependent events (e.g. aftershocks) must be removed to maintain the independence and random nature of seismicity.

For this study, the removal of aftershocks was required and the approach of *Gardner* and *Knopoff* (1974) [also Mueller et. al. (1995)], which has been used in several seismicity studies was considered. The following questions should be considered in any removal process.

- 1. How far away in space can an aftershock occur?
- 2. How far away in time can an aftershock occur?
- 3. What is a main shock?

There is no unique answer to these questions since there is essentially no difference between aftershocks and main shocks. Each one is a consequence of the same process and is a natural response to the loading of an area. The only difference lies in the size of the sampling window that one chooses to distinguish an aftershock from a mainshock. Theoretically, one may choose scales that approach global proportions and time frames on the order of decades to model aftershocks. At this level, almost every earthquake becomes part of an aftershock series.

New developments in modeling earthquake occurrence are now leaning toward a Unified Law for Earthquakes that describes the probability of inter-occurrence times between mainshock earthquakes for a cutoff magnitude and region size. This Law links together the key areas of earthquake research, the Gutenberg–Richter Law, the Omori Law of aftershock decay, and the fractal dimension of a fault.

While a Unified Law is a step in the right direction, there is still no adequate method that is all-inclusive in modeling all earthquake activity (to include swarms, temporal rate changes, and triggering) for seismic hazard studies. Since most methods assume a Poissonian model, artificial methods of removing clusters such as aftershocks are necessary to preserve independence between events. Hazard analysts should be aware that there is no consistency among these methods and that hazard analysis will always be subject to these biases and systematic errors.

For this project we initially considered the Gardner and Knopoff approach to remove aftershocks from a catalog. This technique has been used extensively in the past such as on a GSHAP project in the north Balkans as well as in New Zealand. However, another GSHAP report for the Northern Andes used Maeda's (1996) relationships. These

relations establish spatial and temporal criteria to eliminate aftershocks from the original data as follows (but if minimum magnitudes are not chosen carefully, then negative numbers can result):

For distance: $L \ 10^{(0.5Mm-1.8)}$ For time: $t \ 10^{(0.17+0.85(Mm-4.0))/1.3} - 0.3$ For magnitude: Ma < Mm - 1.0 Ma < Mm - 1.0

where L represents the epicentral distance from the main shock, t is the time in days from occurrence of a main shock, Mm is the magnitude of a mainshock, and Ma is that of an aftershock. These relations were derived by Utsu (1970) and consider the exponential decay in the number and magnitude of aftershocks.

Many engineers use the declustering algorithm, CLUSTER2000, that is available on the USGS website based on the work of Reasenberg and others. While this algorithm is also imperfect, it has nevertheless been largely adopted by the hazard analysis community for declustering catalogs as a standard solution. This work was performed by a third party.

MAGNITUDES

Magnitudes are a useful way to indicate the size of earthquakes, yet there are many shortcomings to this measure as an absolute way to know the size of an event. For example, it is well known that discrepancies exist between seismological and geodetically determined magnitudes. In addition, there are differences in seismological magnitude types as well as in how they are computed. Seismologists have developed numerous magnitude scales to address different seismological constraints, instrumental concerns, and local site conditions. These magnitudes include:

MI: Local magnitude. The formula for calculating local magnitudes is very specific to the region in which they are used. MI in one region may not be equivalent to another.

Mb: Body wave magnitude. *mb* is valid up to mb=6.5, which means that even if another magnitude measure suggests a larger magnitude, the *mb* determination will saturate or not go higher than 6.5. It is therefore an unreliable measure for major earthquakes.

Ms: Surface wave magnitude. *Ms* is valid up to about Ms=7.2 where it saturates. *Ms* is generally not calculated for deep earthquakes or where there is an absence of surface waves.

MD: Duration (or coda) magnitude. This is sometime written as Mc. The calculation of this magnitude depends upon the duration of the seismic waves (coda) above noise or a pre-determined level.

Mw: Moment magnitude. Mw is based on the moment of the earthquake and relies on the fault dimensions (rupture area). It is calculated using the corner frequency from which seismic waves fall off in size.

Magnitu de type	Applicab le magnitud	Distance range	Comment s
Duration (Md)	<4	0-400 km	Based on the duration of shaking as measured by the time decay of the amplitude of the seismogram. Often used to compute magnitude from seismograms with "clipped" waveforms due to limited dynamic recording range of analog
Local (ML)	2-6	0-400 km	The original magnitude relationship defined by Richter and Gutenberg for local earthquakes in 1935. It is based on the maximum amplitude of a seismogram recorded on a Wood-Anderson torsion seismograph.
Surface wave (Ms)	5-8	20-180 degrees	A magnitude for distant earthquakes based on the amplitude of Rayleigh surface waves measured at a period near 20 sec.
Moment (Mw)	>3.5	all	Based on the moment of the earthquake, which is equal to the rigidity of the earth times the average amount of slip on the
			fault times the amount of fault area that slipped.
Body (Mb)	4-7	16-100 degrees (only deep earthquakes)	Based on the amplitude of P body- waves. This scale is most appropriate for deep-focus earthquakes.

The USGS describes these same magnitudes as:

Given the variety of issues at hand, it is nearly impossible to arrive at a single measure that encompasses all the nuances of using different instruments as well as recordings from different locations that have different site characteristics and propagation geometries.

Nevertheless, we have established the following relationships between magnitudes from different reporting agencies for the area under consideration:

	1	
CARIBBEAN MAGNITUDE RELATIONS	r squared	# of points
$M_{s}(ISC) = 1.3682Mb(ISC) - 2.2657$	0.5667	1747
	1	.
Mw(SAT) = 0.6793Ms(R-I) + 2.1545	0.9983	272
Mw(SAT) = 0.6636Ms(ISC) + 2.2274	0.9902	24
Mw(SAT) = 0.7964Ms(AKW) + 1.4579	0.9873	21
Mw(SAT) = 0.8827Ms(W&C) + 0.8427	0.9824	32
Mw(SAT) = 0.7902 Mb(CER) + 0.7944	0.8276	46
Mw(SAT) = 0.822 Mb(GS) + 0.6613	0.8657	111
Mw(SAT) = Mb(IGE) = Mb(SAA,NIC,TRN)	1	168
Mw(SAT) = 0.7397Mb(ISC) + 1.0038	0.7367	483
Mw(SAT) = 1.1068Mb(ZUN) - 0.7566	0.6634	50
$Mw(SAT) = 0.1092Mb^3 - 1.2983Mb^2 + 5.8736Mb$	0.892	1134
	· · · · · ·	
Mw(SAT) = MD(all)	1	144
Mw(SAT) = ML(all)	1	317
	-	
Mw(HRV) = 0.938Mb(GS) + 0.6839	0.552	559
Mw(HRV) = 1.0098Mw(GS) - 0.0974	0.9713	
Mw(HRV) = 0.6854Ms(GS) + 2.124	0.8815	423
Mw(GS) = 0.6659Ms(GS) + 2.2863	0.8854	128
$1414(05) = 0.0057415(05) \pm 2.2005$	0.0004	120
MB(GS) = 0.7879MD(TRN) + 0.9233	0.6	5931
MD(US) = 0.7079MD(TKN) + 0.9233	0.0	1751

A Cautionary Note in Using Magnitude Relationships for Seismic Hazard Studies

Minor changes in magnitudes will ultimately affect b-values which may lead to systematic errors that propagate through the entire seismic hazard analyses. *Bender* (1983) indicated that "Probabilistic ground motions calculated for a range of b-values show that a small fractional change in the assumed b-value can have a substantially larger fractional effect on the ground motion calculated."

One of the greatest sources of error in magnitude and location determinations is the type and version of velocity model that is employed. The more information one has

about the three dimensional variations in density through which seismic waves must propagate, the better. However, almost all networks use an approximate 1-D model where the velocity of seismic waves varies with depth only. This approach leads many software programs to "fix" the depth at 5, 12, 33, 70, or 100 km to allow the programs to converge on a solution for the location. These inherent location errors invariably lead to errors in magnitude as well. Although generally less than 1 magnitude unit, the errors are significant.

A very real example can be made with ISC (International Seismological Centre) data which uses mostly European observatories and shows consistently smaller magnitudes by about 0.5-0.7 units for earthquakes in Mexico over those determined by local and regional networks. This is because the influence of the subduction zone slab is not taken into account by ISC. Likewise, locations for events in Mexico by North American networks are quite consistently 50-100 km north of those determined by the local Mexican network.

For those unaccustomed to working with these earthquake location programs and models, it may come as a surprise that there could be numerous 1-D models employed for any single area. A local network will use a model specific to that region to calculate *mb*, for example. Over time, this velocity model might change (usually for the better) yielding magnitude estimates that are more accurate. However, this does not guarantee that all prior earthquakes will have their magnitudes recalculated in a catalog. Finally, an international agency will generally use an approximate global velocity model to calculate *mb* which in some cases can lead to differences up to 1.0 magnitude units. In the end we could be faced with three different *mb* determinations in a local catalog, all of which will differ by varying amounts.

The moment magnitude, Mw, was created to help alleviate these problems by using the "corner frequency" which is the point at which the frequency content of the signal rapidly decays relative to the principal frequencies in the signal. The process of determining magnitude with this approach is that it is possible to determine moment magnitude at all scales. However, this is generally not done in practice for magnitudes less than M4.5. (see USGS website and Appendix figures). For regions with relatively

few earthquakes, this leaves a relatively small magnitude range from which to determine recurrence relations.

Finally, any conversion of other magnitude types (*mb* or *Ms*) to *Mw* will carry all the inherent errors outlined previously leading to systematic errors in hazard analysis studies.

While it is recognized that some unit of common measure must be used in probabilistic seismic hazard studies (and one does the best they can with what is available), it should be understood that the ultimate outcomes will reflect all the errors and uncertainties carried in the data. In Latin America, the historical data is notorious for incompleteness and severe limitations in consistency.

COMPLETENESS

Changes in seismic networks and earthquake reporting thresholds are not uncommon. These changes may come as upgrades to the instrumentation (e.g. conversion of analog to digital equipment), increases in the number or distribution density of stations which may lead to lower magnitude detection thresholds, implementation of new velocity models in calculating magnitudes, personnel changes which affect the quality of the manual earthquake phase picks, or network shut downs leading to incomplete or inhomogeneous records.

The DNAG catalog is not complete for periods before 1900 and only complete from about M 5.5 up through 1960 for Central America. There are no good complete catalogs for this region prior to 1964.

The reasons for these completeness problems is that very little attention was given to non-destructive earthquakes in the Caribbean and Central America through the mid-20th century. Long periods of time can transpire in the many regions of the world without destructive earthquakes. It was only with the introduction of the WWSSN in 1964 that any attempt was made to catalog the moderate sized events in the Latin American region. Smaller events were gradually added in the 1970s and 1980s.

After the Defense Department began compiling earthquake catalogs in association with the Nuclear Test Ban Treaty in 1990 did smaller events (M4.5-5.0) become consistently reported. Some local catalogs exist for areas like Mexico and Chile but these are scattered in time and space. The Mexican catalog, for example, may have good coverage for a year and then none for two or three years during a time when funding was not available.

Finally, earthquake magnitudes were not given to events in Central and South America until after 1964. Only the largest shocks were given magnitudes and often long after the event occurred. This was the reason the DNAG and CERESIS catalogs were sought after in this study. An attempt was made by these projects (DNAG and CERESIS) to homogenize the magnitudes and to place magnitudes on the larger events which were previously only given intensities. Since all events without magnitudes were removed from the catalog, this eliminated most events prior to 1964 in both catalogs (cut at M 3.5). This cut is not very valid for events prior to 1964 since any event recorded in that time period was almost certainly greater than magnitude M 4.5. (Sic).

Some of the earthquake catalogs used in this study are: United States Geological Survey (USG), Decade of North America Geology (DNGA project), Harvard, Massachusetts (HRV), International of Seismological Center (ISC), Preliminary Determination of Epicenters from NEIS/CGS, and Puerto Rico Seismic Network (PRSN).

3.1 SEISMIC SOURCES OF PUERTO RICO

The main seismic hazards of Puerto Rico island are represented by all seismic sources comprised in the region delimited by Puerto Rico Trench in the north, the Muertos trough in the south, the Mona Passage in the west, and the Anegada Passage in the east, offshore PR, and GNPRFZ, GSPRFZ, and Lajas Fault onshore PR, as shown in the Fig. 4.

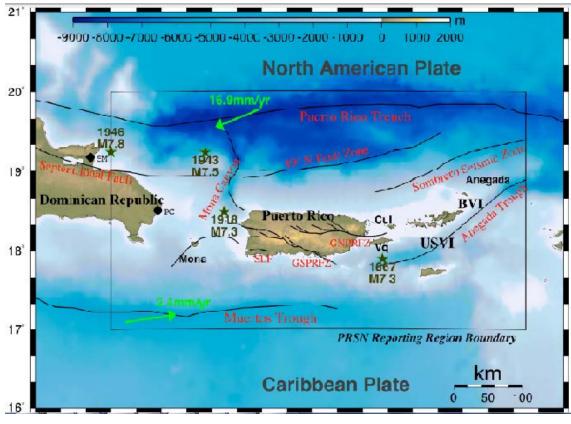


Fig. 4. Main Seismic Hazards

In this study, the probabilistic seismic hazard analysis for the NFE-V-08 DEVELOPMENT Project Site, the seismic hazards considered are those present within an area delimited by a circle with radius of 200 km from the project site, as shown in the Fig. 5.

Fig. 5. Seismic Sources NFE-V-08 DEVELOPMENT Project Site

The seismic sources are listed as follows:

		Attenuation equations	Atkinson- Boore	Atkinson- Boore	Boore-	Campbell-
			(2003) Worldwide Subductio n USGS	(2003) Cascadia Subductio n USGS	Atkinson (2008)	Bozorgnia (2008) NGA USGS
Seismic source	Region	Fault mechanism				
Anegada Gap	Caribbean	Strike Slip Fault			0.75	
Anegada Passage Group A	Caribbean	Strike Slip Fault			0.75	
Bowin fault zone		Strike Slip Fault			0.75	
Bunce fault zone		Strike Slip Fault			0.75	
Cerro Goden fault zone 1	Caribbean	Strike Slip Fault			0.75	
Cerro Golden fault zone 2		Strike Slip Fault			0.75	
Cerro Golden fault zone 3	Caribbean	Strike Slip Fault			0.75	0.25
Great Northern Puerto Rico fault zone 1	Caribbean	Strike Slip Fault			0.75	
Great Northern Puerto Rico fault zone 2		Strike Slip Fault			0.75	
Great Northern Puerto Rico fault zone 3	Caribbean	Strike Slip Fault			0.75	
Great Southern Puerto Rico fault zone 1	Caribbean	Strike Slip Fault			0.75	0.25
Great Southern Puerto Rico fault zone 2	Caribbean	Strike Slip Fault			0.75	
Great Southern Puerto Rico fault zone 3	Caribbean	Strike Slip Fault			0.75	
Investigator East fault	Caribbean	Strike Slip Fault			0.75	0.25
Investigator West fault	Caribbean	Strike Slip Fault			0.75	0.25
Septentional Mona section	Caribbean	Strike Slip Fault			0.75	
South Lajas fault	Caribbean	Strike Slip Fault			0.75	0.25
Caribbean Plate interior	Caribbean	Normal Fault, Strike Slip Fault			0.75	0.25
N Puerto Rico Trough	Caribbean	Strike Slip Fault, Reverse Fault			0.75	
Puerto Rico	Caribbean	Strike Slip Fault, Reverse Fault			0.75	0.25
Anegada passage 1	Caribbean	Normal Fault			0.75	0.25
Anegada passage 2	Caribbean	Normal Fault			0.75	0.25
Mona - Yuma Rift	Caribbean	Normal Fault			0.75	
Mona Canyon east	Caribbean	Normal Fault			0.75	
Mona Canyon west	Caribbean	Normal Fault	1.1.1.1		0.75	0.25
Navidad East Shallow	Caribbean	Subduction Intraslab	0.25			
Puerto Rico - Virgin Is Deep	Caribbean	Subduction Intraslab	0.25	0.75		
Puerto Rico Shallow	Caribbean	Subduction Intraslab	0.25			
Virgin Islands Shallow	Caribbean	Subduction Intraslab	0.25	0.75		
Central Muertos	Caribbean	Subduction Interface	0.25			
East Muertos		Subduction Interface	0.25			
Navidad Bank		Subduction Interface	0.25			
Puerto Rico fault	Caribbean	Subduction Interface	0.25	0.75		
Virgin Islands	Caribbean	Subduction Interface	0.25	0.75		
West Muertos	Caribbean	Subduction Interface	0.25	0.75		

Table 1. NFE-V-08 DEVELOPMENT Project Site Seismic Sources

Where two or more seismic sources overlap, the magnitudes ranges are adjusted in order to avoid double counting of hazard contributions. All seismic sources that are located more than 200 km from the study site, are excluded from the seismic hazard analysis.

Two ground-motion-relations are applied to the subduction models:

Atkinson-Boore (USGS 2008 MRC) Worldwide Subduction, and (ii) Atkinson-Boore (USGS 2008 MRC) Cascadia Subduction. Two ground-motion- relations are applied for the strike-slip faults, normal faults, reverse faults: (i) Boore-Atkinson (USGS 2008 MRC), and (ii) Campbell-Bozorgnia (USGS 2008 MRC). To modify

the ground-motion relations to represent the Maximum-Rotated Component, FEMA P-750, Table 21.2-1 is used (EZ-FRISK User's Manual, Implementation Notes). These ground motion attenuation relationships are, among others, typically used in seismic hazard studies for Puerto Rico (Johnson et al., 1992; Frankel et al. 2003; LaForge and McCann, 2005). Table 1 above shows how the attenuation relations are related to seismic sources and the weights assigned to each attenuation model when two or more ground motion relations are associated with the same seismic source.

4.0 PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA)

A seismic hazard analysis has been performed for the NFE-V-08 DEVELOPMENT Project site using appropriate computer code EZ_FRISK 7.65.004. (WLA-Risk Engineering, Inc., 2015). Statistical independence has been assumed. An earthquake from any source occurs without affecting the other sources. Although this requirement can be relaxed (Robin McGuire, 2004), there is no evidence of strong coupling among seismic sources in PR (Calais, 2006).

Appendix 1 shows the PSHA results. Soft bedrock ground accelerations and 5% damped Uniform Hazard Response Spectra (UHS) were computed for this site, corresponding to 2% probability of being exceeded in 50 years (2475 year return period) and 10% probability of being exceeded in 50 years (475 year return period), respectively. Also, a 5% damped Risk-Targeted Uniform Hazard Spectrum (UHS) was computed for this site, corresponding to 2% probability of being exceeded in 50 years (2475 year - average return period) as per ASCE 7-16, Chapter 21, Method 2, based on the Maximum-Rotated Horizontal Ground Motion Component.

EZ-FRISK's built-in Recurrence Models for the Caribbean Region includes both Exponential and Characteristic recurrences models for Puerto Rico seismic sources. In this study exponential and characteristic recurrence models are used. Truncated Exponential Recurrence Models are used for both subduction zone seismic sources and for lines and areal seismic sources. Uniform Hazard Response Spectra (UHS) are obtained from the hazard analysis. The uncertainties in the probabilistic seismic hazard analysis are taken into account by the application of three recurrence models: a)

Characteristic Model, b) Exponential Model, and c) Truncated Exponential Model. The weighted average of these models are applied to every seismogenic fault considered in this study. Other uncertainties are included based on the decision-tree method, as described in the reference document "Seismic Source Model for the Caribbean Region".

Table 2 below shows the pseudo acceleration response spectra for rock type B, including adjusted effective PGA, UHS 2 %/50, 10%/50, Risk-Targeted RT-2%/50, 80% PR 2%/50, and the Deterministic response spectra, respectively. As per ASCE 7-16, Chapter 21, Site-Specific Ground Motion Procedures for Seismic Design, the site-specific response spectrum spectral accelerations should not be lower than 80% of the spectral acceleration of the current building codes. The site-specific response spectrum spectral accelerations do not have to be higher than the corresponding Deterministic Response Spectrum, as specified in ASCE 7-16, Section 21.2.2. The Uniform Hazard Spectra (UHS), 2%/50 and RT-2%/50, derived from the site-specific probabilistic seismic hazard analysis performed for the site of the NFE-V-08 DEVELOPMENT Project, predicts acceleration values for bedrock type B, which are in compliance with the requirements of ASCE 7-16, as shown in Table 2 and Fig.6 below.

Т	2%/50	10%/50	RT-2%/50	80% PR	Determ.
0.00	0.42	0.23	0.39	0.32	1.00
0.02	0.55	0.30	0.51	0.44	1.38
0.03	0.61	0.34	0.57	0.50	1.56
0.04	0.67	0.37	0.63	0.56	1.75
0.05	0.74	0.41	0.69	0.62	1.94
0.08	0.92	0.51	0.86	0.80	2.50
0.10	1.05	0.58	0.98	0.80	2.50
0.15	1.05	0.58	0.98	0.80	2.50
0.20	1.05	0.58	0.98	0.80	2.50
0.25	1.05	0.58	0.98	0.80	2.50
0.30	1.05	0.58	0.98	0.80	2.50
0.40	1.05	0.58	0.98	0.80	2.50
0.50	1.05	0.58	0.98	0.77	1.96
0.75	0.79	0.37	0.64	0.51	1.31
1.00	0.59	0.28	0.48	0.38	0.98
1.50	0.39	0.19	0.32	0.26	0.65
2.00	0.30	0.14	0.24	0.19	0.49
3.00	0.20	0.09	0.16	0.13	0.33
4.00	0.15	0.07	0.12	0.10	0.25
5.00	0.12	0.06	0.10	0.08	0.20
7.50	0.08	0.04	0.06	0.05	0.13
10.00	0.06	0.03	0.05	0.04	0.10

Table 2. Uniform Hazard Spectra (UHS)

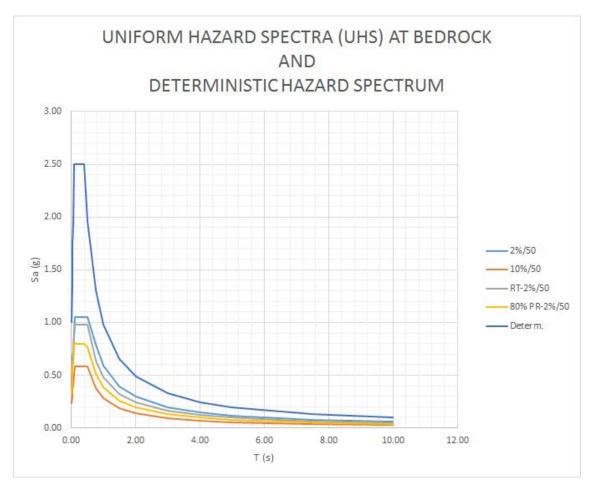


Fig.6. UHS Response Spectra at Bedrock

5.0 SITE RESPONSE ANALYSIS

To support this site-specific ground motion response study, Jaca & Sierra performed site-specific geotechnical investigations, including borings and geophysical surveys (see Appendix 3). One boring have been selected as representative of the site soil stratigraphy. Figs. 7a, 7b, and 7c below show the NFE-V-08 DEVELOPMENT Project Site Soil Profile for boring SWV-1, including the soil layers description.

		Geotechnical Engineers	SURI	FACE	EEX	PLOF	RATI	ON I		BORING NO.: SWV-1	
PRO.	JECT	NFE-V-08 Puerto Rico								JOB 7812 SHEET OF	
LOC	ATION	San Juan, PR			DRILL	ER/DRIL	L RIG:	Eddi	e Sev	rilla / CME-55	
000	RDINAT	ES			DATE	HOLE	START	ED 12-	12-17	COMPLETED 12-14-1	
DES	CRIPTIO	N BY Manuel Candelario			ELEV	ATION T	OP OF H	HOLE (n	nts):		
		TER (FT) Initial:	Final:		ENGINEER Manuel Candelario						
DRIL	LING M	ETHOD: Hollow-Stem Auger 2.25" ID			TOTA	L DEPTH	I OF HO	LE (ft):	100.	5	
Elev. (mts)	DEPTH (feet)	DESCRIPTION	EGEND	Sample No.	BLOWS	SPT N	w	Qu	RC	QU N U W A Qu PL-	
.00	0.00		° 🔆	00 X 3-1	43	85	2		100	20 40 60 80	
		FILL: gravel with silty sand some clay, dense, yellowish brown, yellow	\otimes	X	42 43						
0.91		CLAYEY SILT with sand, soft to medium, gravi	3 XXX h	3-2	18 10 12	22	5		100	4.0	
	5 -	brown, dark gray		3-3	4 1 1	2	76		100	<u> </u>	
	-			3-4	2 2 1	3	32	0.3	100		
2.74	10 -	CLAYEY SILT trace sand, very soft, reddish yellow, yellowish brown	9	3-5	WH 1 1	2	31	0.4	100		
4.27	15 -	1 SILT some clay trace sand, very soft, dark gray	4	3-6	WH WH	WH	87	0.5	100		
	20 -			3-7	WH WH WH	WH	73	0.3	100		
	25 -			9-8	WH WH	WH	69	0.3	100		
8.84	- 30 -	2 CLAYEY SILT trace sand, stiff to hard, yellowinsh red, white, yellow, black	9	8-9	4 5 6	11	32		100		
"N" -	35 _	of blows required to drive the sampling spoon a	distance of	S-10	6 10 ith a 140	27 lbs hamm	21 er falling	3.3 30 in.	100		
"W" "Qu" "Rc"	- Natural ' - Unconi ' - Core re	Noistre Content in percentage of dry weight. fined Compressive Strength in tons per square for ecovery in percent for each successive run. "Rqf le was recovered by advancing the sampler with t	ot. i" - Rock q	uality de	ignation	nitial G.W Vinal G.W	7 Denth				

Fig. 7a

BORING L	OG (CONT. SHEET)	PROJECT	NEE	V-08 Pue	rte Pice		B	DRIN	G NUMBER: SWV-1 JOB 7812 SHEET OF
ev.DEPTH ts) (feet)	DESCRIPTION	LEGEND	ġ.	BLOWS	SPT	w	Qu	RC	0 N □ W ▲ Qu PL- RQD% Qu 1 2 3 4
-			S	2 17					N-W 20 40 60 80
40 - -			S-11	4 8 10	18	37	1.6	100	
45 -			S-12	8 10 13	23	35	2.6	100	
- - 50 -			S-13	9 13 17	30	36	2.1	100	
55 -			S-14	8 10 13	23	36	1.7	100	
60 -			3-15	6 8 13	21	37	1.4	100	
65 -			S-16	5 9 15	24	40	0.9	100	
70 -			8-17	5 9 11	20	41		100	
55. 75 and s	HLY WEATHERED LIMESTONE with and, very dense, reddish yellow,	74 clay white	S-18	9 40/5	_ 40/5"	24		55	

Fig. 7b

	esting Laboratories	PROJECT				BOR	BORING NUMBER: SWV-1			
BORING L	OG (CONT. SHEET)	NFE-V-08 Puerto Rico						Ľ	7812 OF	
lev.DEPTH nts) (feet) 0.00	DESCRIPTION	LEGEND	Sample No.	BLOWS	SPT N	w	Qu R	с	^Q N □ W ▲ Qu PL+ RQD% ^{Qu} 1 ? ? ? ? N ^{-W} 20 40 60 80	
80 -			8-19	32 40/5"	40/5"	15	3	33		
85 -			5-20	12 40/5"	40/5"	15	1	00		
- - 90 -			3-21	31 38 29	67	13	1	00		
95 -			8-22	19 29 14	43	13	1	00		
100			5-23	16 18 24	42	24	1	00		
105										
	ws required to drive the sampling sp ure Content in percentage of dry we impressive Strength in tons per squ									

Fig. 7c

5.1 SEISMIC VELOCITY DATA

Jaca & Sierra provided also the Shear Wave Velocity Survey results for NFE-V-08 DEVELOPMENT Project site. One seismic downhole profile was carried out. The results are shown in Table 3, and Fig. 8.

	JACA & SIERRA Testing Laboratories, Inc. Geotechnical Engineers												
	TABLE 1. SHEAR WAVE VELOCITY MEASUREMENT ASTM D7400-08 DOWNHOLE SEISMIC TEST - BORING SWV-1												
Operator:		201111		M. Candela									
Test Date / W	eather:)17; 9-10am/82	2 F, cloudy							
Source: 12 lb sledge hammer													
Downhole Re					xial Geophone								
Recording Eq Borehole Info					eismograph sed borehole								
Method of Ins					D Hollow Stem	Augers							
Casing Diame				2 inch Sch.		-							
Clamp Metho			_	Mechanical									
Ground Surfa Shear Wave \$				0 7.5	m #								
Compression				3.5									
Pipe Stickup:	. ,	and another	- 4e		ft								
Receiver Offs				-	ft								
Ground Surfa	ce Elevation	@ Borehole	e, Eg:	0	m								
				Source	Reference	Interval	Interval						
Recorded	Corrected	Receiver	Receiver	Slant	Shear Wave	Arrival Time	Shear Wave						
Geophone	Geophone	Depth,	Elevation	Distance,	Arrival Time	Difference	Velocity, Vs						
Depth (ft)	Depth (ft)	D _o (ft)	(m)	L _R (ft)	(millisec)	∆Ts (millisec)	(ft/sec)						
5	5	5	-1.52	9.01	5.9	6.4	571						
10	10	10	-3.05	12.50	12	6.1	5/1						
						13.4	319						
15	15	15	-4.57	16.77	25.4	18.7	245						
20	20	20	-6.10	21.36	44.1	10.7	243						
						11.9	398						
25	25	25	-7.62	26.10	56	8	603						
30	30	30	-9.15	30.92	64	8	000						
						6.1	799						
35	35	35	-10.67	35.79	70.1								
40	40	40	-12.20	40.70	78	7.9	621						
40	40	40	-12.20	40.70	10	8.1	608						
45	45	45	-13.72	45.62	86.1								
50	50	50	-15.24	50.56	90	3.9	1266						
00	00	UC	-15.24	00.00	90	4.8	1031						
55	55	55	-16.77	55.51	94.8								
						3.2	1549						
60	60	60	-18.29	60.47	98	3	1655						
65	65	65	-19.82	65.43	101	5	1033						
						2.9	1714						
70	70	70	-21.34	70.40	103.9	2.5	1989						
75	75	75	-22.87	75.37	106.4	2.0	1303						
						2.4	2074						
80 80 80 -24.39 80.35 108.8													
85	85	85	-25.91	85.33	110.6	1.8	2766						
						1.4	3558						
90	90	90	-27.44	90.31	112	2	2492						

Table 3. Shear	Wave	Velocities
----------------	------	------------

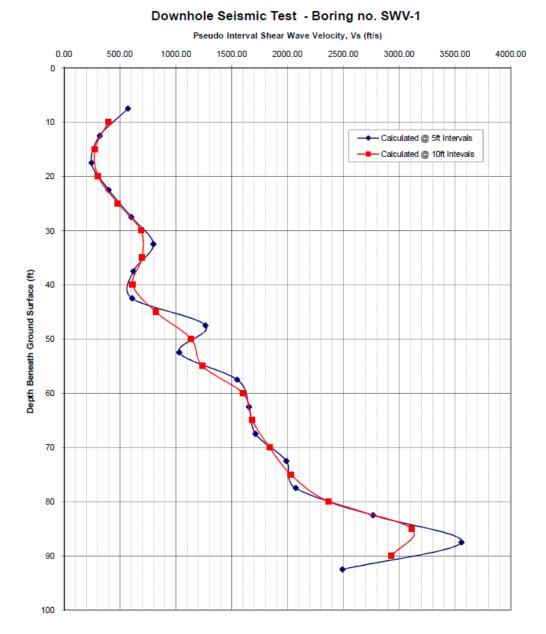


Fig. 8. Shear Wave Velocity Profile (ft/s)

5.2. SITE CATEGORIZATION. SEISMIC SITE CLASS

Based on the shear wave velocity, Vs30, analysis and the results shown in Table 5, the Site Class is D as per ASCE 7-16, Chapter 20. However, the geotechnical boring logs show the presence of a very soft soil stratum at a depth between 15 ft and 30 ft. As per ASCE 7-16, Table 20.3-1, the presence of this soil stratum classifies the site as E or F.

Layer	di	Vsi	di/Vsi
	(ft)	(ft/s)	(ft/(ft/s))
1	5	571	0.0088
2	5	319	0.0157
3	5	245	0.0204
5	5	398	0.0126
5	5	603	0.0083
5	5	799	0.0063
5	5	621	0.0081
5	5	608	0.0082
5	5	1266	0.0039
5	5	1031	0.0048
5	5	1549	0.0032
5	5	1655	0.0030
5	5	1714	0.0029
5	5	1989	0.0025
5	5	2074	0.0024
5	5	2766	0.0018
5	5	3558	0.0014
5	5	2492	0.0020
5	5	2492	0.0020
5	5	2492	0.0020
∑di =	100	∑di/Vsi =	0.1203
<i>V</i> _{\$30}	$=\frac{\sum a}{\sum \frac{a}{V}}$	$\frac{l_i}{l_i} = 830$	0 <i>ft s</i>
	OTION		

SEISMIC SITE CLASS D

Table 4. Boring SWV-1. Seismic Site Class

6.0 SITE-SPECIFIC GROUND RESPONSE ANAYLSES 6.1 SHAKE ANALYSES

The SHAKE Code (Schnabel, 1972; Idriss and Sun, 1991) is a widely used program for computing the seismic response of horizontally stratified homogeneous isotropic viscoelastic medium subjected to vertically propagating waves (FEMA 450/NEHRP 2003). The program models the nonlinear behavior of soils in an equivalent linear fashion by iterating the strain-dependent shear modulus and damping ratio of each layer until values of these parameters are compatible with the computed shear strain. EZ-FRISK 7.65.004 uses SHAKE 91 for calculating the ground motion response at the surface given a bedrock ground motion and the layers of soil that overlain the bedrock at the site.

Five (5) SHAKE analyses have been run for the soil column SWV-1 based on the corresponding mechanical properties provided in the geotechnical and geophysical investigations reports, as shown in Tables 3 and 5. The Magnitude-Distance-Epsilon deaggregated seismic hazards (Figs. 9, 10, 11) show that 8.0 Mw earthquakes ground motions can be expected from subduction zone seismogenic structures at a distance of 80 km from the project site. Likewise, 6.5 Mw earthquakes can be expected from on land strike-slip faults at a distance of 20 km. A suite of five ground motions with earthquake magnitudes, epicenter distances, source mechanisms, and site geology similar to the deaggregated seismic hazards for NFE-V-08 DEVELOPMENT Project Site (See Appendix 4) have been selected for the purpose of this study, and are shown in Table 7, and included in Appendix 5. A total of five (5) acceleration time histories, corresponding to the Maximum-Rotated horizontal components have been scaled to obtain the Response Acceleration Compatible Ground Motion Time Histories using the well-known RSPM99 spectral matching algorithm, based on the Time-Domain-Approach method (Lilahanad and Tseng 1988, Abrahamson 1992), and modified to preserve non-stationarity at long periods by using different functional forms for the adjustment of the time-histories (Risk engineering, Inc., 2009) to match the Adjusted Risk-Targeted Uniform Hazard Spectrum (UHS) for 2% probability of being exceeded in 50 yr for bedrock, resulted from the seismic hazard analysis. This UHS has been obtained by adjusting the 2%/50 UHS Acceleration Response Spectrum, as shown in Table 7 and Fig. 12 below, following the Method 2 in ASCE 7-16, and combining the Total Hazard Curve resulted from the PSHA with the built-in Fragility Curve for San Juan PR included in the USGS tool Risk-Targeted Ground Motion Calculator (Luca et al., 2007). . These ground motions where entirely input in separate program runs to the base layer of the SHAKE column. This

bedrock layer is designated as Site Class B per ASCE 7-16. Puerto Rico Vs30 soft rock layer has been encounter to be NEHERP Class C (USGS B) (Motazedian and Atkinson, 2005). The results of these SHAKE analyses are graphically shown in Appendix 5.

Layer	Name	Thickn	Classification		Description	Modulus Reduction Curve	Damping Curve	Den	Max. Shear Wave Velo	Max. She
1	Clayey Silt	5.0 feet	USCS ML		Clayey silt with sand, s	Various (Vucetic & Dobry	Various (Vucetic & Dobry	110	571.0 feet per second	1114.7 ksf
2	Clayey Silt	5.0 feet	USCS ML		Clayey silt with sand, s	Various (Vucetic & Dobry	Various (Vucetic & Dobry	110	319.0 feet per second	347.911 ksf
3	Silt	5.0 feet	USCS ML		Silt, some sand, very	Various (Vucetic & Dobry	Various (Vucetic & Dobry	110	245.0 feet per second	205.22 ksf
4	Silt	5.0 feet	USCS ML		Silt, some sand, very	Various (Vucetic & Dobry	Various (Vucetic & Dobry	110	398.0 feet per second	541.568 ksf
5	Silt	5.0 feet	USCS ML		Silt, some sand, very	Various (Vucetic & Dobry	Various (Vucetic & Dobry	110	603.0 feet per second	1243.14 ksf
6	Clayey Silt	5.0 feet	USCS ML		Clayey silt, trace sand	Various (Vucetic & Dobry	Various (Vucetic & Dobry	110	799.0 feet per second	2182.63 ksf
7	Clayey Silt	5.0 feet	USCS ML		Clayey silt, trace sand	Various (Vucetic & Dobry	Various (Vucetic & Dobry	110	621.0 feet per second	1318.47 ksf
8	Clayey Silt	5.0 feet	USCS ML		Clayey silt, trace sand	Various (Vucetic & Dobry	Various (Vucetic & Dobry	110	608.0 feet per second	1263.85 ksf
9	Clayey Silt	5.0 feet	USCS ML		Clayey silt, trace sand	Various (Vucetic & Dobry	Various (Vucetic & Dobry	120	1266.0 feet per second	5977.82 ksf
10	Clayey Silt	5.0 feet	USCS ML		Clayey silt, trace sand	Various (Vucetic & Dobry	Various (Vucetic & Dobry	120	1031.0 feet per second	3964.54 ksf
11	Clayey Silt	5.0 feet	USCS ML		Clayey silt, trace sand	Various (Vucetic & Dobry	Various (Vucetic & Dobry	120	1549.0 feet per second	8949.08 ksf
12	Clayey Silt	5.0 feet	USCS ML		Clayey silt, trace sand	Various (Vucetic & Dobry	Various (Vucetic & Dobry	120	1655.0 feet per second	10215.8 ksf
13	Clayey Silt	5.0 feet	USCS ML		Clayey silt, trace sand	Various (Vucetic & Dobry	Various (Vucetic & Dobry	120	1714.0 feet per second	10957.1 ksf
14	Clayey Silt	5.0 feet	USCS ML		Clayey silt, trace sand	Various (Vucetic & Dobry	Various (Vucetic & Dobry	120	1789.0 feet per second	11937 ksf
15	Highly Weat	5.0 feet	FM-410 Siltstn		Weathered limestone,	Rock (Schnabel et al. 197	Rock (Schnabel, Lysmer,	130	2074.0 feet per second	17380.2 ksf
16	Highly Weat	5.0 feet	FM-410 Siltstn		Weathered limestone,	Rock (Schnabel et al. 197	Rock (Schnabel, Lysmer,	130	2766.0 feet per second	30913.1 ksf
17	Highly Weat	5.0 feet	FM-410 Siltstn		Weathered limestone,	Rock (Schnabel et al. 197	Rock (Schnabel, Lysmer,	130	3558.0 feet per second	51150.5 ksf
18	Highly Weat	5.0 feet	FM-410 Siltstn	<u> </u>	Weathered limestone,	Rock (Schnabel et al. 197	Rock (Schnabel, Lysmer,	130	2492.0 feet per second	25091.9 ksf
19	Highly Weat	5.0 feet	FM-410 Siltstn		Weathered limestone,	Rock (Schnabel et al. 197	Rock (Schnabel, Lysmer,	130	2492.0 feet per second	25091.9 ksf
20	Highly Weat	5.0 feet	FM-410 Siltstn	<u>.</u>	Weathered limestone,	Rock (Schnabel et al. 197	Rock (Schnabel, Lysmer,	130	2492.0 feet per second	25091.9 ksf
21	Site B Bedro	Infinite	FM-410 Grnt	NP.		Rock (Schnabel et al. 197	Rock (Schnabel, Lysmer,	140	4000.0 feet per second	69621.3 ksf

Table 5. SHAKE Column for Boring SWV-1

EARTHQUAKE	MAGNITUDE (Mw)	SITE	COMPONENT
Loma Prieta	6.93	В	LOMAP_A01000.AT2
Hector Mine	7.13	В	HECTOR_PFT090.AT2
ChiChi Taiwan	7.62	В	CHICHI_CHY010-N.AT2
Cape Mendocino	7.51	В	CAPEMEND_LFS270.AT2
Sierra Mexico	7.20	В	COALINGHSC3090

Table 6. PEER Ground Motions

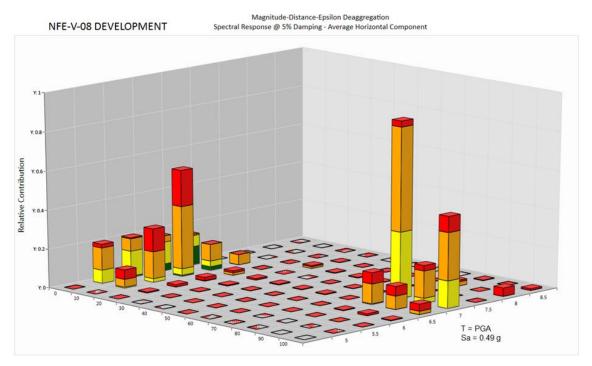


Fig. 9a. Deaggregated Seismic Hazards. T = 0.0 s and Sa = 0.49g

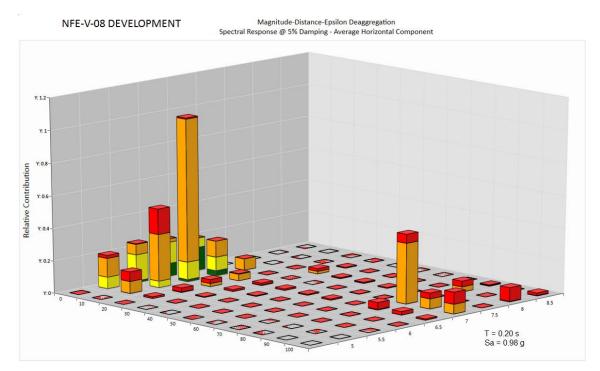


Fig. 9b. Deaggregated Seismic Hazards. T = 0.20 s and Sa = 0.98g

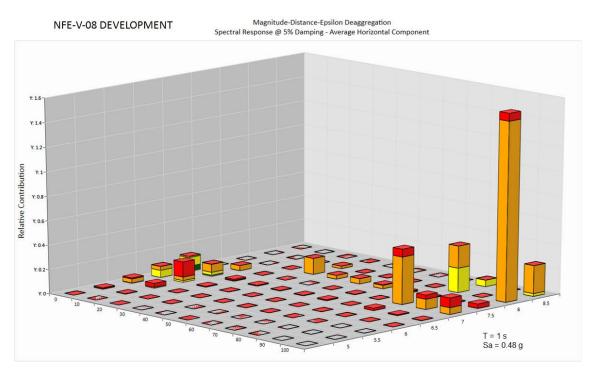


Fig. 9c. Deaggregated Seismic Hazards. T = 1.0 s and Sa = 0.48g

Т	Sa	CR	RT-Sa
0.00	0.53	0.94	0.49
0.02	0.59	0.94	0.55
0.03	0.65	0.94	0.61
0.04	0.71	0.94	0.67
0.05	0.75	0.94	0.71
0.08	0.89	0.94	0.84
0.10	1.01	0.94	0.95
0.15	1.08	0.94	1.02
0.20	1.05	0.94	0.98
0.25	0.94	0.94	0.88
0.30	0.87	0.94	0.82
0.40	0.85	0.94	0.80
0.50	0.76	0.94	0.72
0.75	0.60	0.94	0.56
1.00	0.52	0.94	0.48
1.50	0.37	0.94	0.34
2.00	0.29	0.94	0.27
3.00	0.15	0.94	0.14
4.00	0.12	0.94	0.11
5.00	0.08	0.94	0.08
7.50	0.04	0.94	0.04
10.00	0.02	0.94	0.02

Table 7. Risk-Targeted UHS Response Spectrum

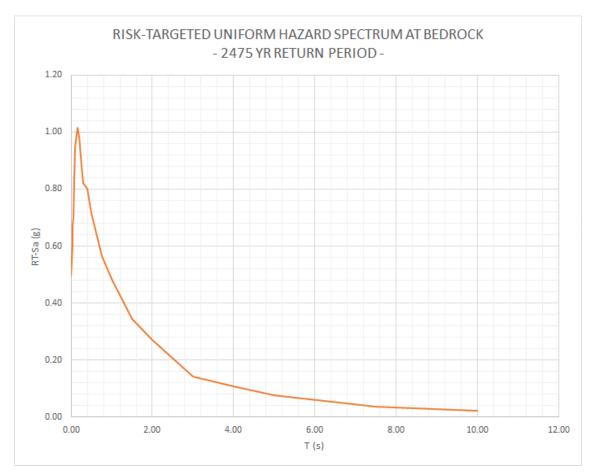


Fig. 10. Risk-Targeted UHS Response Spectrum

6.2 SITE-SPECIFIC DESIGN RESPONSE SPECTRUM. SSE AND OBE EARTHQUAKE GROUND MOTIONS SPECTRA.

Finally, and following the procedure stated in ASCE 7-16, Chapter 21, and using the five response spectra at surface resulted from the SHAKE analyses, the Acceleration Response Spectrum Parameters S_s and S_1 for 0.50%, 2.0%, 5.0%, 10.0%, and 20.0% damping, respectively, are obtained, corresponding to separate averages of spectral ordinates at T = 0.20s and T = 1s of the five site-specific ground motion response spectra. The Site-specific Ground Response Spectra for 0.50%, 2.0%, 5.0%, 10.0%, and 20.0% damping, 2% Probability of Exceedance in 50 yr, (2475 yr return period) and 10% of Probability of Exceedance in 50 yr (475 yr return period) for the NFE-V-08 DEVELOPMENT Project Site were developed as per ASCE 7-16 specifications as mentioned above, and are given in Tables 8 and 9 below, and are shown in Figs. 13 and 14, respectively. These response spectra represent the Safe Shutdown Earthquake (SSE) and the Operating Basis Earthquake (OBE), respectively, as requested by the project's RFP.

	Damp.		Damp.		Damp.		Damp.		Damp.
	0.50 %		2.0 %		5.0 %		10.0 %		20.0 %
Т	RT-Sa	Т	RT-Sa	Т	RT-Sa	Т	RT-Sa	Т	RT-Sa
0.00	0.81	0.00	0.50	0.00	0.38	0.00	0.30	0.00	0.26
0.02	0.93	0.02	0.56	0.02	0.44	0.02	0.35	0.02	0.29
0.03	0.99	0.03	0.59	0.03	0.47	0.03	0.37	0.03	0.31
0.04	1.06	0.04	0.62	0.04	0.50	0.04	0.40	0.04	0.33
0.05	1.12	0.05	0.66	0.05	0.53	0.05	0.42	0.05	0.35
0.08	1.27	0.08	0.73	0.08	0.60	0.08	0.48	0.08	0.40
0.10	1.42	0.10	0.81	0.10	0.67	0.10	0.53	0.10	0.45
0.15	1.73	0.15	0.96	0.15	0.82	0.15	0.65	0.15	0.54
0.20	2.03	0.20	1.11	0.20	0.96	0.20	0.76	0.20	0.64
0.25	2.03	0.25	1.26	0.25	0.96	0.25	0.76	0.25	0.64
0.30	2.03	0.30	1.26	0.30	0.96	0.30	0.76	0.30	0.64
0.40	2.03	0.40	1.26	0.40	0.96	0.40	0.76	0.40	0.64
0.50	2.03	0.50	1.26	0.50	0.96	0.50	0.76	0.50	0.64
0.75	2.03	0.75	1.26	0.75	0.96	0.75	0.76	0.75	0.64
0.85	2.03	0.85	1.26	0.85	0.96	0.85	0.76	0.85	0.64
1.00	2.03	1.00	1.26	1.00	0.96	1.00	0.76	1.00	0.54
1.20	1.59	1.20	1.26	1.20	0.83	1.20	0.63	1.20	0.45
1.50	1.27	1.50	0.97	1.50	0.67	1.50	0.51	1.50	0.36
2.00	0.96	2.00	0.73	2.00	0.50	2.00	0.38	2.00	0.27
3.00	0.64	3.00	0.49	3.00	0.33	3.00	0.25	3.00	0.18
4.00	0.48	4.00	0.37	4.00	0.25	4.00	0.19	4.00	0.14
5.00	0.38	5.00	0.29	5.00	0.20	5.00	0.15	5.00	0.11
7.50	0.25	7.50	0.19	7.50	0.13	7.50	0.10	7.50	0.07
10.00	0.19	10.00	0.15	10.00	0.10	10.00	0.08	10.00	0.05

Table 8. Safe Shutdown Earthquake (SSE) Response Spectra

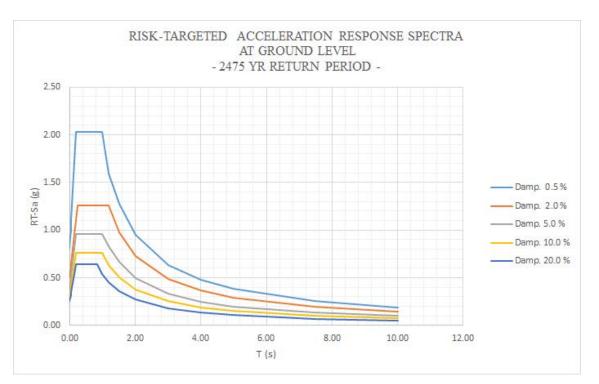


Fig. 11. Safe Shutdown Earthquake (SSE) Response Spectra

	Damp.		Damp.		Damp.		Damp.		Damp.
	0.50 %		2.0 %		5.0 %		10.0 %		20.0 %
Т	RT-Sa	Т	RT-Sa	Т	RT-Sa	Т	RT-Sa	Т	RT-Sa
0.00	0.54	0.00	0.34	0.00	0.26	0.00	0.20	0.00	0.17
0.02	0.62	0.02	0.38	0.02	0.29	0.02	0.23	0.02	0.20
0.03	0.66	0.03	0.40	0.03	0.31	0.03	0.25	0.03	0.21
0.04	0.70	0.04	0.42	0.04	0.33	0.04	0.26	0.04	0.22
0.05	0.74	0.05	0.44	0.05	0.35	0.05	0.28	0.05	0.23
0.08	0.85	0.08	0.49	0.08	0.40	0.08	0.32	0.08	0.27
0.10	0.95	0.10	0.54	0.10	0.45	0.10	0.35	0.10	0.30
0.15	1.15	0.15	0.64	0.15	0.54	0.15	0.43	0.15	0.36
0.20	1.35	0.20	0.74	0.20	0.64	0.20	0.51	0.20	0.36
0.25	1.35	0.25	0.84	0.25	0.64	0.25	0.51	0.25	0.36
0.30	1.35	0.30	0.84	0.30	0.64	0.30	0.51	0.30	0.36
0.40	1.35	0.40	0.84	0.40	0.64	0.40	0.51	0.40	0.36
0.50	1.35	0.50	0.84	0.50	0.64	0.50	0.51	0.50	0.36
0.75	1.35	0.75	0.84	0.75	0.64	0.75	0.51	0.75	0.36
0.85	1.35	0.85	0.84	0.85	0.64	0.85	0.51	0.85	0.36
1.00	1.35	1.00	0.84	1.00	0.64	1.00	0.51	1.00	0.36
1.20	1.06	1.20	0.84	1.20	0.56	1.20	0.42	1.20	0.30
1.50	0.85	1.50	0.65	1.50	0.44	1.50	0.34	1.50	0.24
2.00	0.64	2.00	0.49	2.00	0.33	2.00	0.25	2.00	0.18
3.00	0.42	3.00	0.32	3.00	0.22	3.00	0.17	3.00	0.12
4.00	0.32	4.00	0.24	4.00	0.17	4.00	0.13	4.00	0.09
5.00	0.25	5.00	0.19	5.00	0.13	5.00	0.10	5.00	0.07
7.50	0.17	7.50	0.13	7.50	0.09	7.50	0.07	7.50	0.05
10.00	0.13	10.00	0.10	10.00	0.07	10.00	0.05	10.00	0.04

Table 9. Operating Basis Earthquake (OBE) Response Spectra

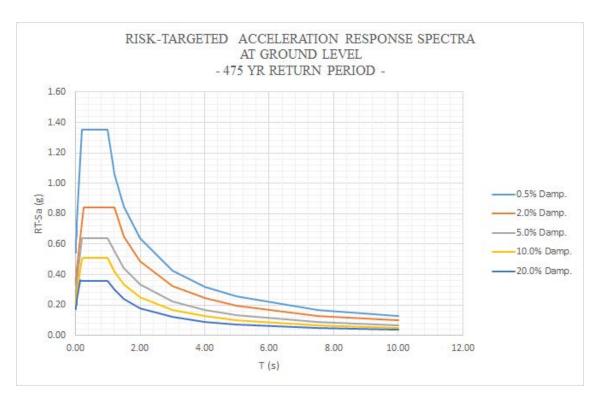


Fig. 12. Operating Basis Earthquake (OBE) Response Spectra

7.0 REFERENCES

Atkinson, G. M., Boore, D. M. (2003) "Empirical Ground-Motion Relations for Subduction-Zone Earthquakes and Their Application to Cascadia and Other Regions," Bulletin of the Seismological Society of America, Vol. 93, No. 4, pp 1703-1729. USGS 2008 MRC.

Atkinson, G. M., Boore, D. M. (2006). "Boore-Atkinson NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters", Report Number PEER 2007/01. USGS 2008 MRC.

Atkinson, G.M., Motazedian, D. (2003), "Ground Motion Relations for Puerto Rico," GSA Special Issue: 2003. Application: Puerto Rico.

Byrne, D., Suarez, G., and McCann, W. R. (1985). Muertos Trough Subduction-Microplate Tectonics in the northern Caribbean. Nature, Vol 317, pp 420-421.

Calais, E., Mazabraud, Y., Mercier de Lepinay, N., Mann, P., Mattioli, G., and Jasma, P. (2002), Strain partitioning and fault slip rates in the northeastern Caribbean from GPS measurements: Geophysical Research Letters, Vol. 29, ISSUE 18, pp. 3-1.

Campbell, K.W., Bozorgnia, Y., "NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s", Earthquake Spectra, Volume 24, No. 1, pages 139–171, Earthquake Engineering Research Institute. USGS 2008 MRC.

Prentice, D. S., P. Mann, and G. Burr, 2000, Prehistoric earthquakes associated with a Later Quaternary in the Lajas Valley, Southwestern Puerto Rico, EOS Trans., American Geophysical Union Annual Fall Meeting, p. F1182.

EZ-FRISK 7.65.004 (2015). WLA- Risk Engineering, Inc.

FEMA 450/2003 Edition. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Building Seismic Safety Council.

FEMA P-450/2009 Edition. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Building Seismic Safety Council.

Johnson W. et al. (1992). Probabilistic seismic hazard and adequacy of Seismic Codes in Puerto Rico. International Symposium on Earthquake Disaster Prevention. Mexico.

Jasma, P. E., G. S. Mattioli, A. Lopez, C. DeMets, T. H. Dixon, P. Mann, and E. Calais (2000). Neotectonics of Puerto Rico and Virgin Islands, Northeastern Caribbean, from GPS geodesy. Tectonics, Vol. 6, 1021-1037.

Jaca & Sierra (2018). "On the Preliminary Geotechnical Exploration Conducted at the Site of the Proposed NFE-V-08 Development at Berths A, B and C, Puerto Nuevo, San Juan, PR.

Kaye, Clifford A. (1959). Costal Geology of Puerto Rico. Geological Survey Professional Paper 317.

LaForge, R.C. and McCann. W. R. (2005). A seismic source model for Puerto Rico, for use in probabilistic ground motion hazard analyses. Geological Society of America, Special Paper 385.

Lithgow, C. W., McCann, W., and Joyce, J., (1987). Extensional tectonics at the eastern edge of the Puerto Rico Platelet: Eos (Transactions, American Geophysical Union, Vol. 68, p. 466-489.

Luco, N., B.R. Ellingwood, R.O. Hamburger, J.D. Hooper, J.K. Kimball & C.A. Kircher (2007), "Risk-Targeted versus Current Seismic Design Maps for the Conterminous United States," Proceedings of the 2007 Structural Engineers Association of California Convention, Lake Tahoe, CA, pp. 163-175.

Mann, P., and Prentice, C. S., (2001). Collaborative research UTIG and USGS, towards an integrated understanding of Holocene fault activity in western Puerto Rico: On land scarp mapping and fault trenching: U. S. Geological Survey.

Manaker, D. M., Calais, E., Freed, A., Tabrez, A., and Przybylski, P. (2006). Plate coupling and strain partitioning in Northeastern Caribbean. American Geophysical Union, Fall Meeting.

McGuire, R.K. (2004). Seismic Hazard and Risk Analysis. Earthquake Engineering Research Institute, MNO-10.

Motazedian, D, and Atkinson, G., (2005) Ground-motion relations for Puerto Rico. Geological Society of America, Special Paper 385.

Mueller C. S., Frankel A. D., Petersen M. D., and Leyendecker E. V. (2003) Documentation for Puerto Rico and the U. S. Virgin Islands. Seismic Hazard Maps for Puerto Rico and the U. S. Virgin Islands. U. S. Geological Survey.

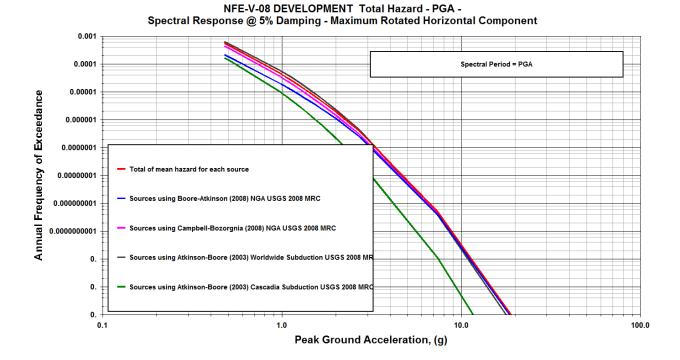
Pease Jr. M.H. (1977) WH Monroe - Puerto Rico: US Geological Survey Open-File Report Map.

Prentice, C. S. (2003). Paleoseismic study of the south Lajas fault, Lajas Valley, southwestern Puerto Rico (abs): Seismological Research Letters, Vol. 74, No. 2, p. 200.

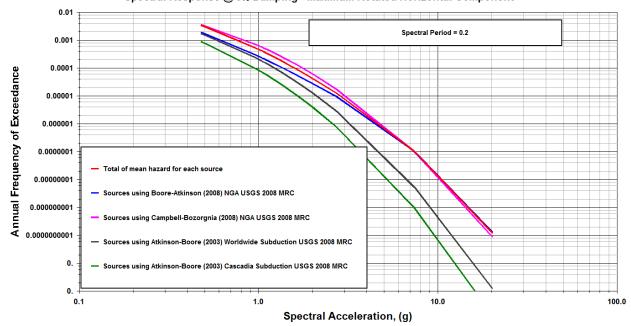
Puerto Rico Building Code (2006). Departamento de Estado Número 7965.

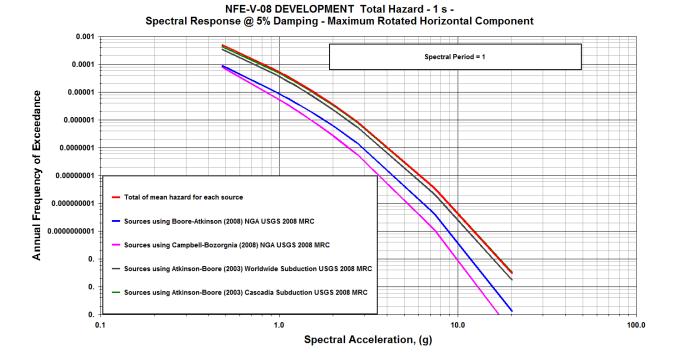
Schnabel, J., Lysmer, H.B. (1972). SHAKE: A Computer Program for Conducting Equivalent Linear Seismic Analyses of Horizontally Layered Soil Deposits. Modified by Idriss, I. M., and Sun, J. I. (1991).

Tuttle, M. P. (2006-2007). Study of Source, Magnitude, and Recurrence Time of Large Earthquakes Affecting Northern Puerto Rico. USGS Award 1434.06HQGR0023.

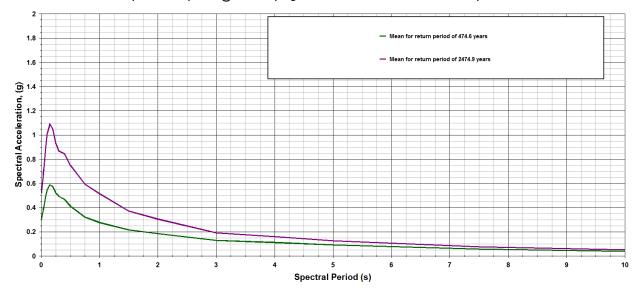

United States Nuclear Regulatory Commission (USNRC), NUREG/CR-7320, "Seismic Design Standards and Calculational Methods in the United States and Japan". Washington DC. 2017.

Van Gestel, J., Mann, P., Dolan, J. F., and Grindlay, N. R. (1998). Structure and tectonics of the upper Cenozoic Puerto Rico-Virgin Islands carbonate platform as determined from seismic reflection studies. Geophysical Research, Vol. 103, Issue B12, p. 30505-30530.

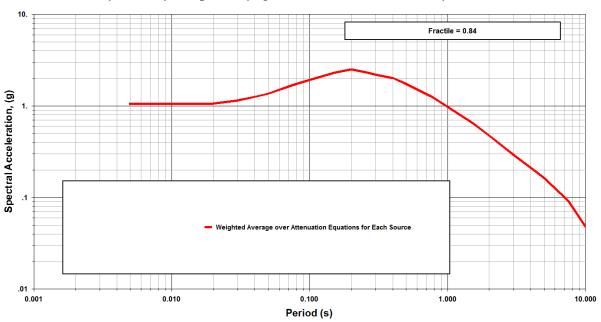

WLA (2006). Summary of Methodology for Source Model Development. Caribbean Seismic Risk Assessment Project. Prepared for Risk Engineering, Inc.


Appendix 1

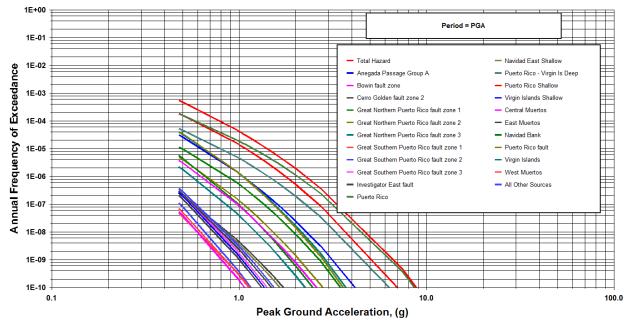
Probabilistic Seismic Hazard Analysis

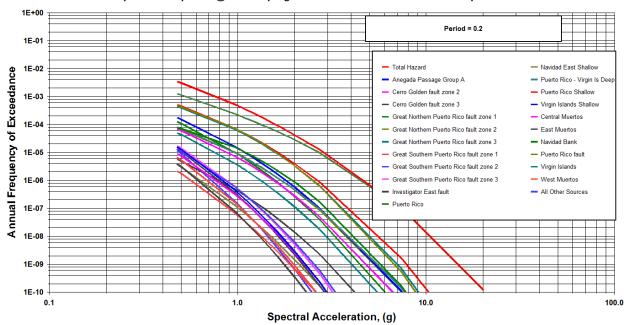


NFE-V-08 DEVELOPMENT Total Hazard - 0.20 s -Spectral Response @ 5% Damping - Maximum Rotated Horizontal Component

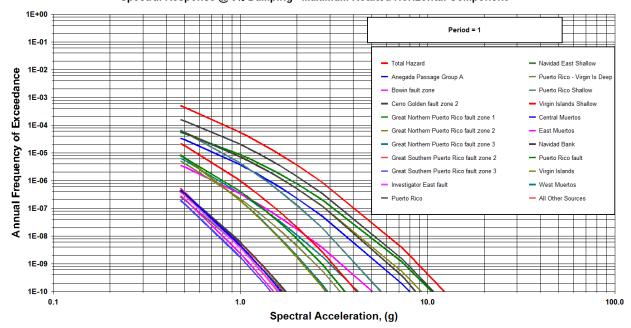


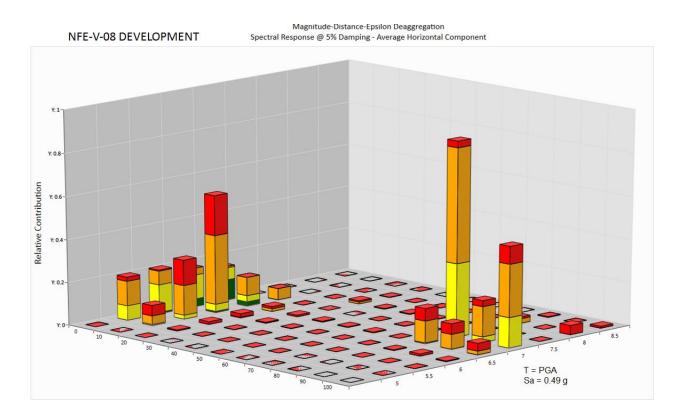
NFE-V-08 DEVELOPMENT Project Site. Uniform Hazard Spectra Spectral Response @ 5% Damping - Maximum Rotated Horizontal Component

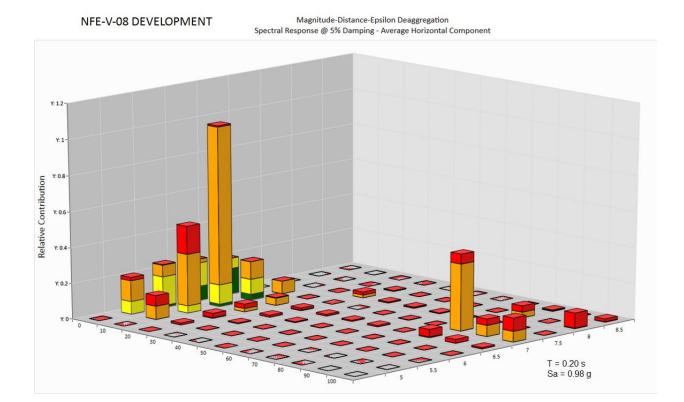




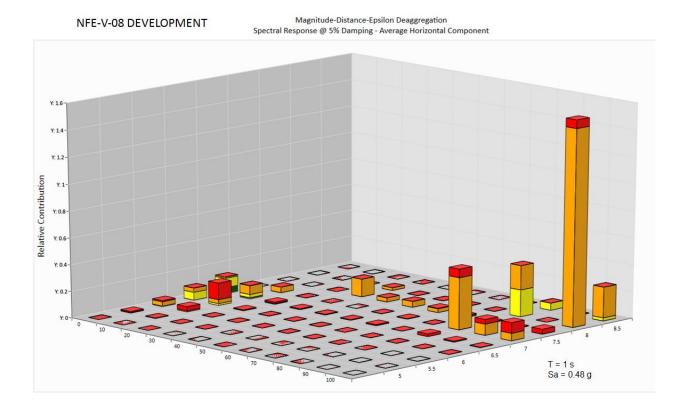
NFE-V-08 DEVELOPMENT Deterministic Spectra Spectral Response @ 5% Damping - Maximum Rotated Horizontal Component

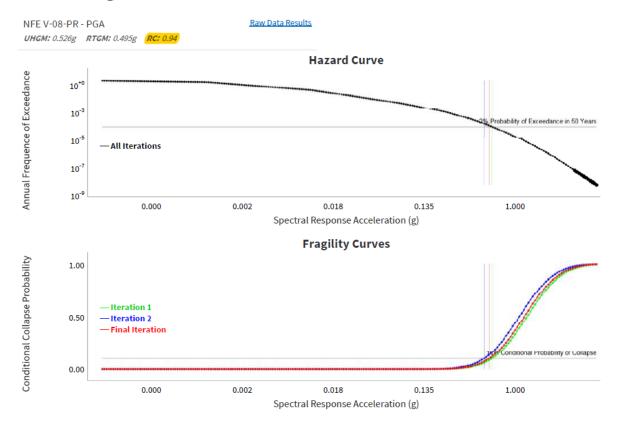

NFE-V-08 DEVELOPMENT Hazard by Seismic Source - PGA -Spectral Response @ 5% Damping - Maximum Rotated Horizontal Component

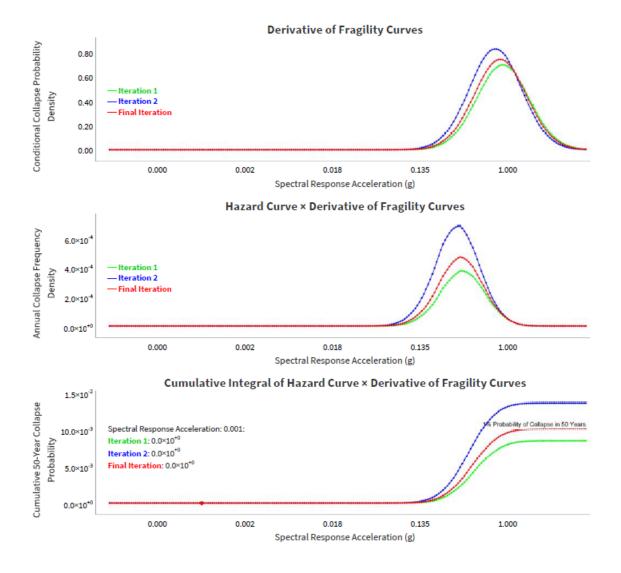


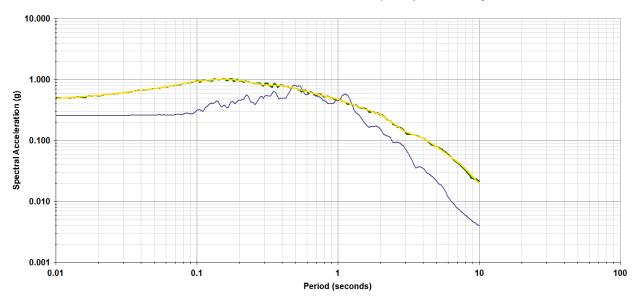

NFE-V-08 DEVELOPMENT Hazard by Seismic Source - 0.20 s -Spectral Response @ 5% Damping - Maximum Rotated Horizontal Component

NFE-V-08 DEVELOPMENT Hazard by Seismic Source - 1 s -Spectral Response @ 5% Damping - Maximum Rotated Horizontal Component

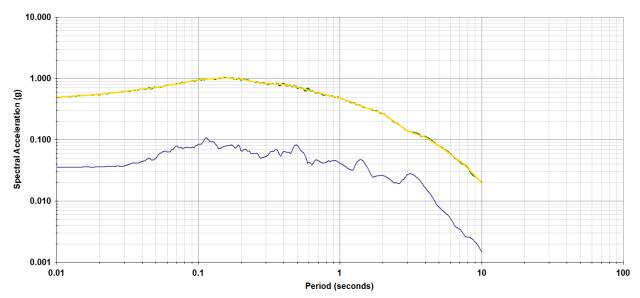


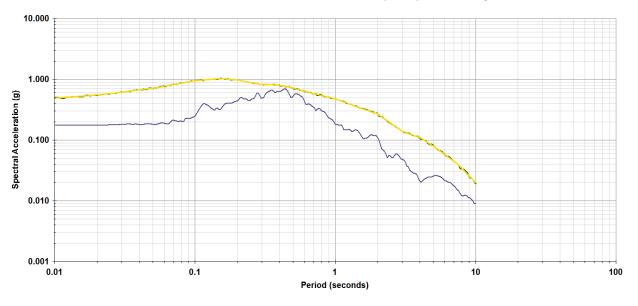




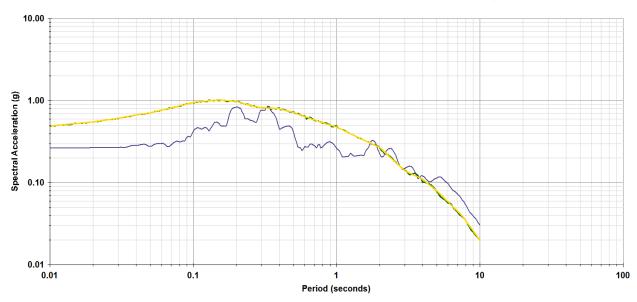


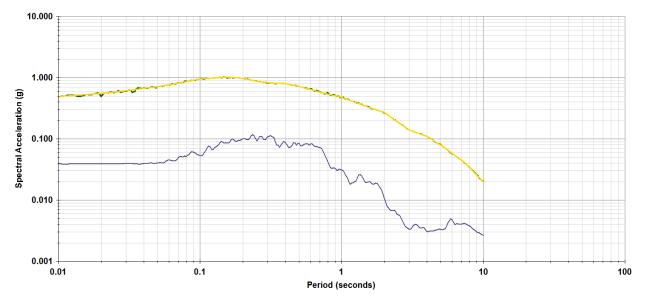
Risk-Targeted Ground Motion Calculator


Appendix 2


Response Spectrum Matching

NFE-V-08 DEVELOPMENT. Loma Prieta. Response Spectrum Matching


NFE-V-08 DEVELOPMENT. Hector Mine. Response Spectrum Matching



NFE-V-08 DEVELOPMENT. ChiChi Taiwan. Response Spectrum Matching

NFE-V-08 DEVELOPMENT. Cape Mendocino. Response Spectrum Matching

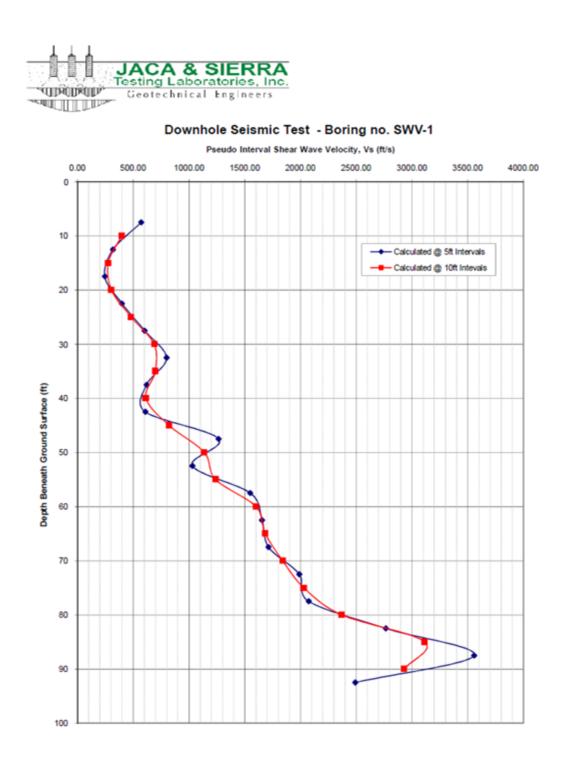
NFE-V-08 DEVELOPMENT. Sierra Mexico. Response Spectrum Matching

Appendix 3

Geotechnical and Geophysics Surveys

780	HCT ,	NFE-V-08 Paerto Rico								BORING NO.: SWV-1														
LOCA	ATION	San Juan, PR			DAL	ERORE	1.805	F.44	a Sar	0#														
COORDINATES DESCRIPTION BY Manuel Candelario SROUNDWATER (FT) Initiat: Final:						DRRLERIDRRL RRO: Eddis Servilla / CME-55 DATE HOLE STARTED 13-13-17 COMPLETED 13-14 ELEVATION TOP OF HOLE (mis): ENGINEER Manuel Candelario TOTAL DEPTH OF HOLE (M: 100.5																		
															LINEO ME	THOD: Hollow-Stem Auger 2.25" ID	, 		11014	LOUPIN	CF III	T the	100.	0 0 0 4 0 1
															DEPTH (feet) 3-35	DESCRIPTION	LEGEND	Dampie No	BLOWS	SPT N	w	Qu	RC	R20% *** 1 2 2 1
	1	FILL greed with sity and some city, dense, yellowch lones, yellow	8	8-1	242	- 16	2		100															
**	+	CLAYEY SLT with cash, with to median, gover	m	1-1	1001	22			100	0.0														
	5-	horem, dade gray		5-3	11	2	76		100															
	-			2-4	1	3	92	0.3	100	a q														
23	10-	CLEVEY SLT mas and, very self, redshit yellow, yellowish human		3-5	988 1 1	2	31	0.4	100															
5Z.	16-	152.7 wave city taxie wash, very with dash gray		2-4	22.22	ж	87	0.8	100															
	20-			8-7	NNN	WE	73	0.3	100	1														
	28 -			2-1	NNN	NE	65	0.3	100															
**	30-	CLAYEV SILT now send, stiff to hard.	,888	5-3	****	11	32		100															
	11			8-10	1.	27	21	3.3	100															

BORING LO	DG (CONT. SHEET)	ROJECT	NTE	V-01 P-	eto Rico		BORING NUMBER: SWV-1				
lev DEPTH Its (feet)	DESCRIPTION	LECEND	Sample No.	BLOWS	SPT N	w	QJ	RC	ROOM	8 x 94 1	0 * * 0 m
		Π								1Y	T Y T
40 -			8-11	100	10	37	1.6	100		1	¥
45 -			8-12	8 10 13	23	35	2.6	100		-	
80-			5-13	111	30	36	2.1	100			
55 -			3-14	-111	23	36	1.7	100			1
60-			8-18	682	21	37	1.4	100		-	1
65 -			2-16	1 and 1	24	-40	0.9	100		1	1
70			8-17	8 m 11	20	41		100			
75 - and sa	LY WEATHERED LIMESTONE with a nd, very dense, reddah yellow, yellow, wh ri required to drive the sampling spoor a	in contrast		40/1				55		10	$\left\langle \right\rangle$

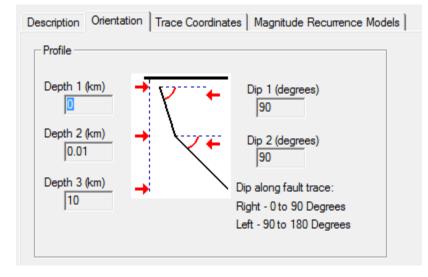

BORING LO	OG (CONT. SHEET)	PROJECT					B	DRIN	10.00	112	SWV	-1
		1.0		V-06 Poet	6 F.L.0		<u> </u>	<u> </u>		0	1.1	
ev DEPTH Its: (feet)	DESCRIPTION	LECEND	Gampie No	BLOWS	SPT	w	0.	RC	ROOM			h R
5.00		E	Sen.	1 2	<i>"</i>		~	~		ww	42 40	
-										1	TT	T
1 1										1		
1										1		
80-			2-19	42/8*	40/5*	15		33		4	4	
				1						Li -		
1										11		
					10.150	15		100				
05 -				42/5*	40/5*	*2		****		4	4	
		new or the								Li -		
1		California de la californi								Li -		
		new term	2-21		67	13		100		1.	1	
90 -		00000		120	· · · ·					9		>
1		-								Li –	/	
										Li –	/	
			1-22	19	43	13		100		Li -	/	
95 -				10						9	1	_
1		100101								1	1	
										1		
			1-22	14	42	24		100		1		
100-		00000		1 24	+		-			-	-	_
105-												

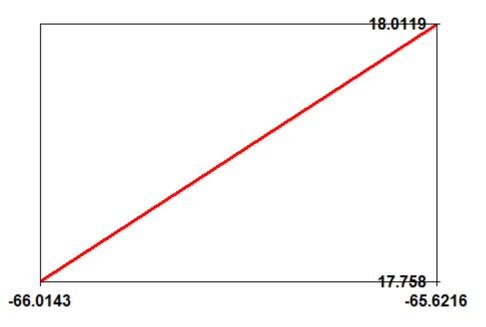
1												
110-												
-												
1												
115 -										17	1.1	i.
" - Number of blow	rs required to drive the sampling spor an Content in percentage of dry weig	in a distance of	12 in 1	ett a 140	Its hermonia mittal G W	e falling	30 in.	-				-

TABLE 1. SHEAR WAVE VELOCITY MEASUREMENT ASTM D7400-08 DOWNHOLE SEISMIC TEST - BORING SWV-1

Operator:	M. Candelario
Test Date / Weather;	Dec. 27, 2017; 9-10am/82 F, cloudy
Source:	12 lb sledge hammer
Downhole Receiver:	BHG 2 Triaxial Geophone
Recording Equipment	ES 3000-Seismograph
Borehole Information:	Grouted cased borehole
Method of Installation:	3.25 Inch ID Hollow Stem Augers
Casing Diameter:	2 inch Sch.40 PVC
Clamp Method:	Mechanical Spring
Ground Surface Elevation @ Source, Eg:	0 m
Shear Wave Source Horizontal Offset, Xs:	7.5 ft
Compression (P) Wave Source Offset, Xp	3.5 ft
Pipe Stickup:	0 π
Receiver Offset from Reference Point:	0 ft
Ground Surface Elevation @ Borehole, Eg:	0 m

Recorded Geophone Depth (ft)	Corrected Geophone Depth (ft)	Receiver Depth, D _i (ft)	Receiver Elevation (m)	Source Slant Distance, L=(ft)	Reference Shear Wave Arrival Time (millisec)	Interval Arrival Time Difference ∆Ts (millisec)	Interval Shear Wave Velocity, Velocity, Velocity
5	5	5	-1.52	9.01	5.9		
			1			6.1	571
10	10	10	-3.05	12.50	12		
		1				13.4	319
15	15	15	-4.57	16.77	25.4		
		0	1			18.7	245
20	20	20	-6.10	21.36	44.1		
			i una		i and i	11.9	398
25	25	25	-7.62	26.10	56		
						8	603
30	30	30	-9.15	30.92	64		
		-	1. 1. 1. 1. 1.			6.1	799
35	35	35	-10.67	35.79	70.1	1000 C	
						7.9	621
40	40	40	-12.20	40.70	78		
	1	3	1	1223	a marine la	8.1	608
45	45	45	-13.72	45.62	86.1		
						3.9	1266
50	50	50	-15.24	50.56	90		
						4.8	1031
55	55	55	-16.77	55.51	94.8		
						3.2	1549
60	60	60	-18.29	60.47	98		1000
			40.00			3	1655
65	65	65	-19.82	65.43	101		
70	70		21.51	70.10	100.0	2.9	1714
70	70	70	-21.34	70.40	103.9		10.00
		70	20.07	75.07	100.4	2.5	1989
75	75	75	-22.87	75.37	106.4		
00			24.20	00.05	400.0	2.4	2074
80	80	80	-24.39	80.35	108.8		0700
85		85	26.04	06.22	110.0	1.8	2766
85	85	85	-25.91	85.33	110.6		2550
90	90	90	-27.44	90.31	112	1.4	3558
90	30	90	-27.44	90.51	112	2	2492
95	95	95	-28.96	95.30	114	2	2432
90	30	90	*28.90	95.30	114		

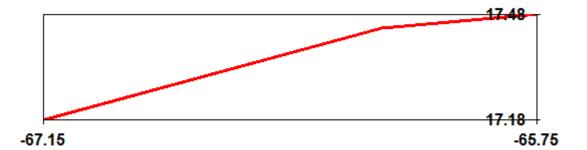

Appendix 4


Seismic Main Sources Parameters

ANEGADA PASSAGE

1.- ANEGADA PASSAGE

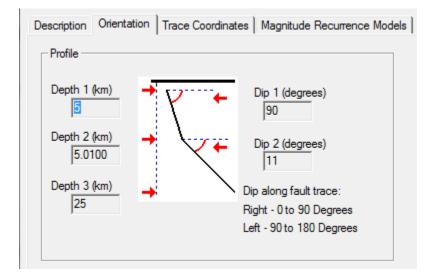
Description	Orientation	Trace Coordinates	Magnitude Recurrence Models	
Name		Anegada Passage G	roup A	
Region		Caribbean	_	
Fault Mech	anism	Strike Slip	_	
Probability of Activity	of [1		
Magnitude	Scale	Moment Magnitude	▼	
Deterministi Magnitude	ic 🛛	6.9		



	Α	В	C
Model Type	Characteristic 🔹	Characteristic 🔹	Characteristic 🔹
Weight (must sum to 1.0)	0.20000	0.60000	0.20000
Rate Type	Slip 🔻	Slip 🔹	Slip 🔻
Rate	1.300E+00	1.300E+00	1.300E+00
Minimum Magnitude	5.00	5.00	5.00
Maximum Magnitude	6.70	6.90	7.10
Mean Magnitude			
Sigma			
Beta	1.0000	1.0000	1.0000
Delta 1	0.1000	0.1000	0.1000
Delta 2	10.0000	10.0000	10.0000
Rupture Dimensioning	Length and Width 🔻	Length and Width 💌	Length and Width 🔻
A (rupture length)	-2.4400	-2.4400	-2.4400
B (rupture length)	0.5900	0.5900	0.5900
Sigma (rupture length)	0.1600	0.1600	0.1600
A (rupture width)	-2.4400	-2.4400	-2.4400
B (rupture width)	0.5900	0.5900	0.5900
Sigma (rupture width)	0.1600	0.1600	0.1600

CENTRAL MUERTOS

Description Orientation	on Trace Coordinates Magnitude Recurrence Models
Name	Central Muertos
Region	Caribbean
Fault Mechanism	Subduction
Probability of Activity	1
Magnitude Scale	Moment Magnitude
Deterministic Magnitude	7.6999


Description Orientation Trace Coordinates Ma	gnitude Recurrence Models
	1 (degrees)
□ Depth 2 (km) 5.0100 9 → Dip 11	2 (degrees)
25 Right	ong fault trace: 0 to 90 Degrees
Area 0 sq. km.	0 to 180 Degrees



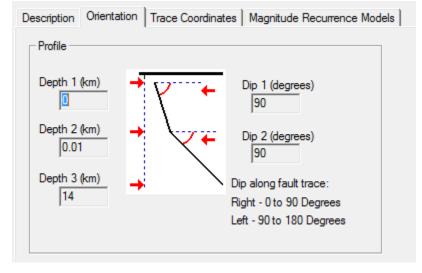
	Α		В		С	
Model Type	Characteristic	-	Characteristic	•	Characteristic	-
Weight (must sum to 1.0)	0.3	30000	0.6	0000	0.1	10000
Rate Type	Slip	-	Slip	•	Slip	-
Rate	6.000)E-01	6.000	E-01	6.00	0E-01
Minimum Magnitude		7.45		7.75		7.95
Maximum Magnitude		7.55		7.85		8.05
Mean Magnitude						
Sigma						
Beta	1.	.0000	1.	0000	1	.0000
Delta 1	0.	1000	0.	1000	0	.1000
Delta 2	10.	.0000	10.	0000	10	.0000
Rupture Dimensioning	Area	-	Area	-	Area	-
		_		_		

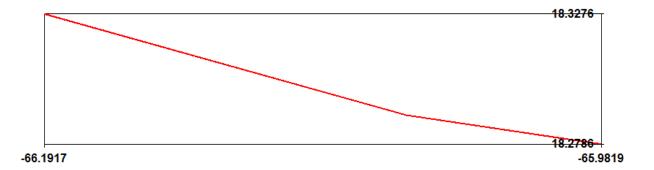
EAST MUERTOS

Description	Orientation	Trace Coordinates Magnitude Recurrence Models
Name		East Muertos - Exp
Region		Caribbean
Fault Mecha	anism	Subduction
Probability of Activity	vf	1
Magnitude	Scale	Moment Magnitude
Deterministi Magnitude	c	7.6999

Description Orientation Tra	ace Coordinates Magnitude Recur
	Α
Model Type	Exponential 🔹
Weight (must sum to 1.0)	1.00000
Rate Type	Activity 🔹
Rate	5.680E-02
Minimum Magnitude	5.00
Maximum Magnitude	7.70
Mean Magnitude	
Sigma	
Beta	2.4744
Delta 1	
Delta 2	
Rupture Dimensioning	Length and Width 🔻
A (rupture length)	-2.4400
B (rupture length)	0.5900
Sigma (rupture length)	0.1600
A (rupture width)	-2.4400
B (rupture width)	0.5900
Sigma (rupture width)	0.1600

GNPR FAULT ZONE 1

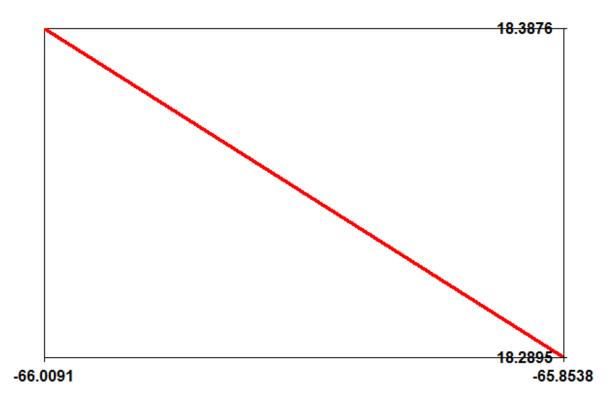

Description Oriental	tion Trace Coordinates Magnitude Recurrence Models
Name	Great Northem Puerto Rico fault zone 1
Region	Caribbean
Fault Mechanism	Strike Slip
Probability of Activity	1
Magnitude Scale	Moment Magnitude
Deterministic Magnitude	7.3
Description Orientati	ion Trace Coordinates Magnitude Recurrence Models
Profile	
Depth 1 (km)	Dip 1 (degrees)
Depth 2 (km)	Dip 2 (degrees)
Depth 3 (km)	Dip along fault trace:
1	Right - 0 to 90 Degrees Left - 90 to 180 Degrees



	Α	В	С
Model Type	Characteristic 🔹	Characteristic 🔹	Characteristic 🔹
Weight (must sum to 1.0)	0.20000	0.60000	0.20000
Rate Type	Slip 🔻	Slip 🔻	Slip 🔹
Rate	3.000E-01	3.000E-01	3.000E-01
Minimum Magnitude	5.00	5.00	5.00
Maximum Magnitude	7.00	7.25	7.50
Mean Magnitude			
Sigma			
Beta	1.0000	1.0000	1.0000
Delta 1	0.1000	0.1000	0.1000
Delta 2	10.0000	10.0000	10.0000
Rupture Dimensioning	Length and Width 🔻	Length and Width 🔻	Length and Width 🔻
A (rupture length)	-2.4400	-2.4400	-2.4400
B (rupture length)	0.5900	0.5900	0.5900
Sigma (rupture length)	0.1600	0.1600	0.1600
A (rupture width)	-2.4400	-2.4400	-2.4400
B (rupture width)	0.5900	0.5900	0.5900
Sigma (rupture width)	0.1600	0.1600	0.1600

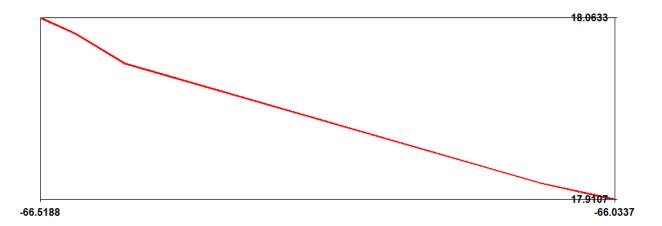
GNPR FAULT ZONE 2

Description	Orientation	Trace Coordinates	Magnitude Recurre	nce Models
Name		Great Northern Puerto	Rico fault zone 2	
Region	[Caribbean		~
Fault Mech	anism	Strike Slip		Ŧ
Probability of Activity	of [1		
Magnitude	Scale [Moment Magnitude		~
Deterministi Magnitude	ic	6.2		



	Α	Α			C	
Model Type	Characteristic	-	Characteristic	•	Characteristic	•
Weight (must sum to 1.0)	0.20	000	0.60	000	0.2000	
Rate Type	Slip	-	Slip	•	Slip	•
Rate	3.000	E-01	3.000E	-01	3.000	E-01
Minimum Magnitude		5. 00	5	.00		5.00
Maximum Magnitude		6.00	6	.20		6.40
Mean Magnitude						
Sigma						
Beta	1.0	1.0000		1.0000		0000
Delta 1	0.1	000	0.10	000	0.1	1000
Delta 2	10.0	000	10.0000		10.0000	
Rupture Dimensioning	Length and Widt	h 🔻	Length and Width	•	Length and Wid	th 💌
A (rupture length)	-2.4	400	-2.44	400	-2.4	4400
B (rupture length)	0.6	900	0.5900		0.590	
Sigma (rupture length)	0.1	600	0.10	600	0.1	1600
A (rupture width)	-2.4	400	-2.44	400	-2.4	4400
B (rupture width)	0.5	900	0.59	900	0.	5900
Sigma (rupture width)	0.1	600	0.10	600	0	1600

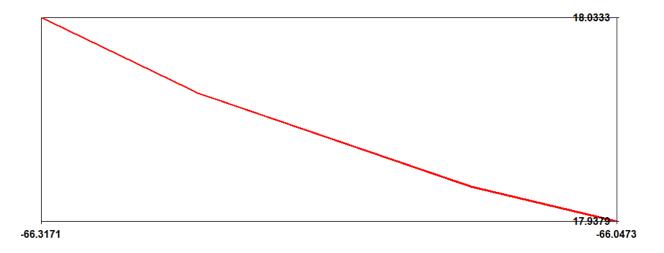
GNPR FAULT ZONE 3


Description Oriental	tion Trace Coordinates Magnitude Recurrence Models
Name	Great Northem Puerto Rico fault zone 3
Region	Caribbean
Fault Mechanism	Strike Slip
Probability of Activity	1
Magnitude Scale	Moment Magnitude
Deterministic Magnitude	6.2
Description Orientat	ion Trace Coordinates Magnitude Recurrence Models
Profile	
Depth 1 (km) Depth 2 (km) 0.01 Depth 3 (km) 14	Dip 1 (degrees) 90 Dip 2 (degrees) 90 Dip along fault trace: Right - 0 to 90 Degrees
	Left - 90 to 180 Degrees

	Α		В		C	
Model Type	Characteristic	•	Characteristic	•	Characteristic	•
Weight (must sum to 1.0)	0.30	000	0.60	000	0.10	0000
Rate Type	Slip	•	Slip	•	Slip	•
Rate	3.000E	E-01	3.000E	-01	3.000	E-01
Minimum Magnitude		5.00	Ę	5.00		5.00
Maximum Magnitude	(5.00	6	5.20		6.40
Mean Magnitude						
Sigma						
Beta	1.0000		1.0	000	0 1.0000	
Delta 1	0.1	0.1000 0.1000		0.1000		
Delta 2	10.0	000	10.0	000	0 10.0000	
Rupture Dimensioning	Length and Widt	h 🔻	Length and Widt	h 🔻	Length and Wid	th 💌
A (rupture length)	-2.4	400	-2.4	400	-2.4	1400
B (rupture length)	0.5	900	0.5	900	0.5	5900
Sigma (rupture length)	0.1600 0.1600		0.1600		1600	
A (rupture width)	-2.4	400	-2.4	400	-2.4	1400
B (rupture width)	0.5	900	0.5	900	0.5	5900
Sigma (rupture width)	0.1	1600 0.1600		0.1	1600	

GSPR FAULT ZONE 2

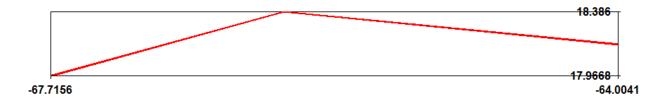
Description Orientat	ion Trace Coordinates Magnitude Recurren	ce Models
Name	Great Southem Puerto Rico fault zone 2	
Region	Caribbean	T
Fault Mechanism	Strike Slip	Ţ
Probability of Activity	1	
Magnitude Scale	Moment Magnitude	~
Deterministic Magnitude	6.9000	
Description Orientat	tion Trace Coordinates Magnitude Recurren	ce Models
Profile		
Depth 1 (km)	Dip 1 (degrees)	
Depth 2 (km) 0.01	Dip 2 (degrees)	
Depth 3 (km) 14	Dip along fault trace:	
	Right - 0 to 90 Degrees Left - 90 to 180 Degrees	


Description Orientation	Trace Coordinates Magnitu	ude l	Recurrence Models			
	Α		В		С	
Model Type	Characteristic	•	Characteristic	•	Characteristic	-
Weight (must sum to 1.0)	0.200	00	0.60000		0.20000	
Rate Type	Slip	•	Slip	•	Slip	-
Rate	3.000E-	01	3.000E	-01	3.000E	-01
Minimum Magnitude	5.	00	5.	.00	5	5.00
Maximum Magnitude	6.	75	6	90	7	7.10
Mean Magnitude						
Sigma						
Beta	1.0000		1.0000		1.0000	
Delta 1	0.10	00	0.10	00	0.1	000
Delta 2	10.00	00	10.0000		10.0000	
Rupture Dimensioning	Length and Width	-	Length and Width	•	Length and Widt	h 💌
A (rupture length)	-2.44	00	-2.44	00	-2.4	400
B (rupture length)	0.59	00	0.59	00	0.5	900
Sigma (rupture length)	0.16	00	0.16	600	0.1	600
A (rupture width)	-2.44	00	-2.44	00	-2.4	400
B (rupture width)	0.59	00	0.59	00	0.5	900
Sigma (rupture width)	0.16	00	0.16	600	0.1	600

GSPR FAULT ZONE 3

Description Orientat	ion Trace Coordinates Magnitude Recurrence Models
Name	Great Southern Puerto Rico fault zone 3
Region	Caribbean
Fault Mechanism	Strike Slip
Probability of Activity	1
Magnitude Scale	Moment Magnitude
Deterministic Magnitude	6.5
Description Orienta	tion Trace Coordinates Magnitude Recurrence Models
Profile Depth 1 (km)	Dip 1 (degrees)
Depth 2 (km)	Dip 2 (degrees)
Depth 3 (km)	Dip along fault trace:

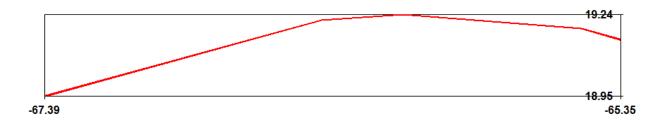
Right - 0 to 90 Degrees Left - 90 to 180 Degrees


14

	Α		В	
Model Type	Characteristic	•	Characteristic 🔹	
Weight (must sum to 1.0)	0.30	000	0.70000	
Rate Type	Slip	•	Slip 🔹	
Rate	3.000	E-01	3.000E-01	
Minimum Magnitude		5. 00	5.00	
Maximum Magnitude		6.40	6.60	
Mean Magnitude				
Sigma				
Beta	1.0	000	1.0000	
Delta 1	0.1	000	0.1000	
Delta 2	10.0000		10.0000	
Rupture Dimensioning	Length and Widt	h 🔻	Length and Width 💌	
A (rupture length)	-2.4	400	-2.4400	
B (rupture length)	0.5	900	0.5900	
Sigma (rupture length)	0.1	600	0.1600	
A (rupture width)	-2.4	400	-2.4400	
B (rupture width)	0.5	900	0.5900	
Sigma (rupture width)	0.1	600	0,1600	

PUERTO RICO-VIRGIN ISLANDS DEEP

Description Orientation	on Trace Coordinates Magnitude Recurrence Models
Name	Puerto Rico - Virgin Is Deep
Region	Caribbean
Fault Mechanism	Subduction
Probability of Activity	1
Magnitude Scale	Moment Magnitude
Deterministic Magnitude	7.5
Description Orientat	tion Trace Coordinates Magnitude Recurrence Models
Profile	
Depth 1 (km)	Dip 1 (degrees)
Depth 2 (km) 100.0100	Dip 2 (degrees)
Depth 3 (km) 200	Dip along fault trace: Right - 0 to 90 Degrees
	Left - 90 to 180 Degrees


Description Orientation Tr	ace Coordinates	Magnitude	Recum
	Α		
Model Type	Exponential	•	
Weight (must sum to 1.0)		1.00000	
Rate Type	Activity	-	
Rate	8.3	230E-02	
Minimum Magnitude		5.00	
Maximum Magnitude		7.50	
Mean Magnitude			
Sigma			
Beta		2.0581	
Delta 1			
Delta 2			
Rupture Dimensioning	Length and V	Vidth 🔻	
A (rupture length)		-2.4400	
B (rupture length)		0.5900	
Sigma (rupture length)		0.1600	
A (rupture width)		-2.4400	
B (rupture width)		0.5900	
Sigma (rupture width)		0.1600	

PUERTO RICO SHALLOW

Description Orientation	on Trace Coordinates Magnitude Recurrence Models]
Name	Puerto Rico Shallow	
Region	Caribbean	
Fault Mechanism	Subduction	
Probability of Activity	1	
Magnitude Scale	Moment Magnitude	
Deterministic Magnitude	7.5	
Description Orientatio	n Trace Coordinates Magnitude Recurrence Models]
Profile		
Depth 1 (km)	Dip 1 (degrees)	
Depth 2 (km) 40.0099	Dip 2 (degrees)	
Depth 3 (km)	Dip along fault trace:	

Right - 0 to 90 Degrees Left - 90 to 180 Degrees

112

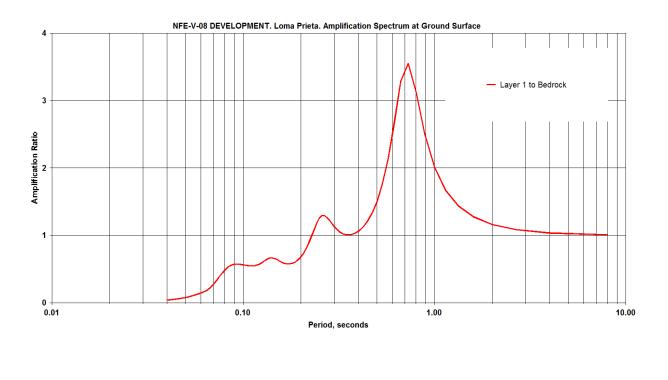
s

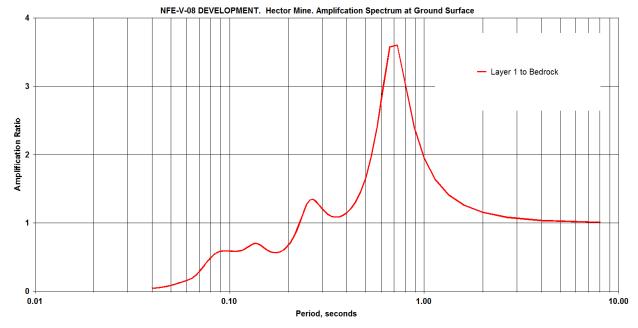
Description Orientation Tra	ce Coordinates Magnitud	le Recurrence Models
	А	В
Model Type	Exponential •	·
Weight (must sum to 1.0)	1.0000	0
Rate Type	Activity	
Rate	1.724E-0	1
Minimum Magnitude	5.0	0
Maximum Magnitude	7.5	0
Mean Magnitude		
Sigma		
Beta	2.090	3
Delta 1		
Delta 2		
Rupture Dimensioning	Length and Width	•
A (rupture length)	-2.440	0
B (rupture length)	0.590	0
Sigma (rupture length)	0.160	0
A (rupture width)	-2.440	0
B (rupture width)	0.590	0
Sigma (rupture width)	0.160	0

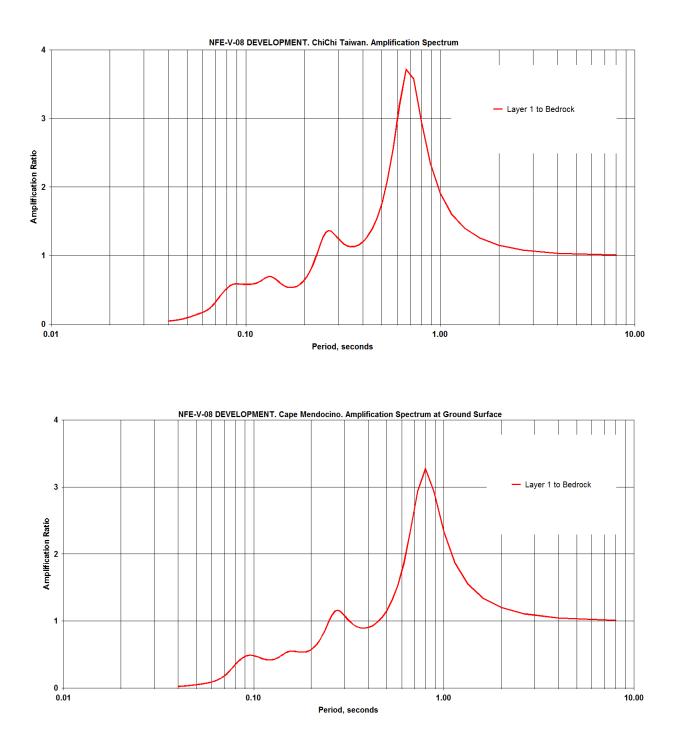
VIRGIN ISLANDS SHALLOW

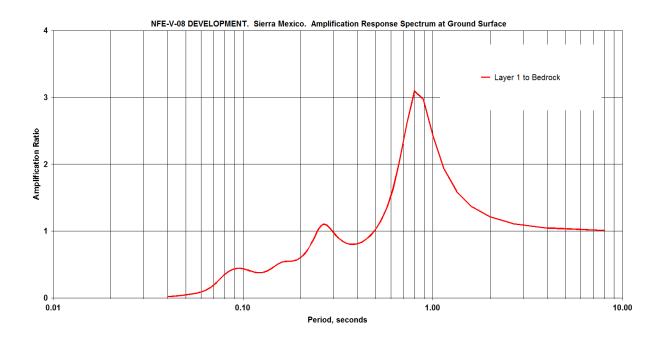
Description Orientation	on Trace Coordinates Magnitude Recurrence Models
Name	Virgin Islands Shallow
Region	Caribbean 👻
Fault Mechanism	Subduction
Probability of Activity	1
Magnitude Scale	Moment Magnitude
Deterministic Magnitude	7.5
Description Orientation	on Trace Coordinates Magnitude Recurrence Models
Profile	
Depth 1 (km) 40 Depth 2 (km) 40.0099	Dip 1 (degrees) 90 Dip 2 (degrees) 40
Depth 3 (km)	Dip along fault trace:
98	Right - 0 to 90 Degrees
	Left - 90 to 180 Degrees
Area 0	sq. km.

escription Orientation Tra	ace Coordinates Magnitude F	Recurrence Mode
	Α	В
Model Type	Exponential 🔹	
Weight (must sum to 1.0)	1.00000	
Rate Type	Activity •	
Rate	2.377E-01	
Minimum Magnitude	5.00	
Maximum Magnitude	7.50	
Mean Magnitude		
Sigma		
Beta	1.9271	
Delta 1		
Delta 2		
Rupture Dimensioning	Length and Width 🔻	
A (rupture length)	-2.4400	
B (rupture length)	0.5900	
Sigma (rupture length)	0.1600	
A (rupture width)	-2.4400	
B (rupture width)	0.5900	
Sigma (rupture width)	0.1600	

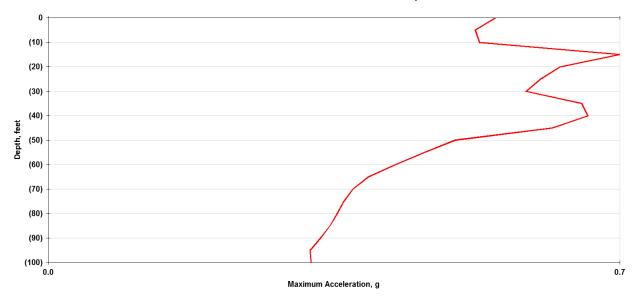

Appendix 5

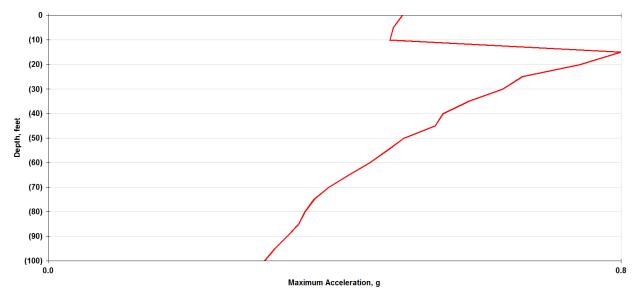

Site Response. Shake Analyses


SHAKE COLUMN

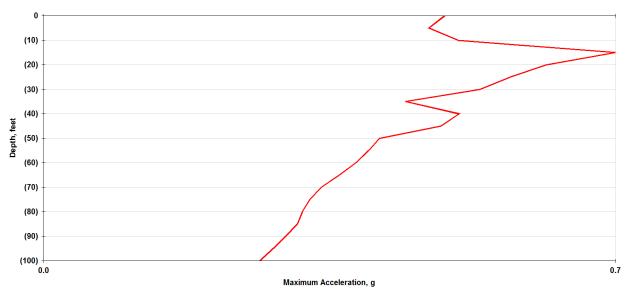

Layer	Name	Thic	Classification	5_	Description	Modulus Re	Damping Cur	Den_	Max. Shear Wave Velo	Max. Shear Modulus
1	Clayey Sit	5.01	USCS ML		Clayey silt wit	Various (Vuc	Various (Vuc_	110	571.0 feet per second	1114.7 ksf
2	Clayey Silt	5.0 f	USCS ML	Ш	Clayey silt wit	Various (Vuc	Various (Vuc	110	319.0 feet per second	347.911 kst
3	Silt	5.01	USCS ML	П	Silt, some sa	Various (Vuc	Various (Vuc	110	245.0 feet per second	205.22 kst
4	Silt	5.0 f.	USCS ML	Ш	Sit, some sa	Various (Vuc	Various (Vuc	110	398.0 feet per second	541.568 kst
5	Silt	5.01	USCS ML		Silt, some sa	Various (Vuc	Various (Vuc	110	603.0 feet per second	1243.14 ksf
6	Clayey Silt	5.01	USCS ML	M	Clayey silt, tr_	Various (Vuc	Various (Vuc	110	799.0 feet per second	2182.63 kst
7	Clayey Silt	5.0 f	USCS ML		Clayey silt, tr	Various (Vuc	Various (Vuc	110	621.0 feet per second	1318.47 kst
\$	Clayey Silt	5.0f	USCS ML	Ш	Clayey silt, tr	Various (Vuc	Various (Vuc	110	608.0 feet per second	1263.85 kst
9	Clayey Silt	5.0 f	USCS ML	Ш	Clayey silt, tr_	Various (Vuc	Various (Vuc	120	1266 0 feet per second	5977.82 kst
10	Clayey Silt	5.0 f_	USCS ML	Ш	Clayey silt, tr	Various (Vuc	Various (Vuc	120	1031.0 feet per second	3964.54 kst
11	Clayey Silt	5.0f	USCS ML		Clayey sit, tr	Various (Vuc	Various (Vuc	120	1549.0 feet per second	8949.08 kst
12	Clayey Silt	5.0 f.	USCS ML	Ш	Clayey sitt tr	Various (Vuc	Various (Vuc	120	1655.0 feet per second	10215.8 kst
13	Clayey Silt	5.0f.	USCS ML		Clayey silt, tr	Various (Vuc	Various (Vuc	120	1714.0 feet per second	10957.1 kst
14	Clayey Silt	5.0 f.	USCS ML	Ш	Clayey silt, tr	Various (Vuc	Various (Vuc	120	1789.0 feet per second	11937 kst
15	Highly Weat	5.0f_	FM-410 Siltstn		Weathered li	Rock (Schna	Rock (Schna	130	2074.0 feet per second	17380.2 kst
16	Highly Weat.	5.0 f.	FM-410 Siltstn		Weathered I	Rock (Schna.	Rock (Schna	130	2766.0 feet per second	30913.1 kst
17	Highly Weat.	5.01	FM-410 Siltstn		Weathered IL.	Rock (Schna	Rock (Schna	130	3558.0 feet per second	51150.5 kst
18	Highly Weat.	5.01	FM-410 Siltstn		Weathered li	Rock (Schna.	Rock (Schna	130	2492.0 feet per second	25091.9 kst
19	Highly Weat	5.0 f.	FM-410 Siltstn	1	Weathered li	Rock (Schna	Rock (Schna	130	2492.0 feet per second	25091.9 kst
20	Highly Weat.	5.01	FM-410 Siltstn		Weathered IL.	Rock (Schna	Rock (Schna	130	2492.0 feet per second	25091.9 kst
21	Site B Bedro	Infinite	FM-410 Gmt	NP		Rock (Schoa.	Rock (Schna.)	140	4000 0 feet per second	69621 3 kst

AMPLIFICATION SPECTRA AT GROUND SURFACE

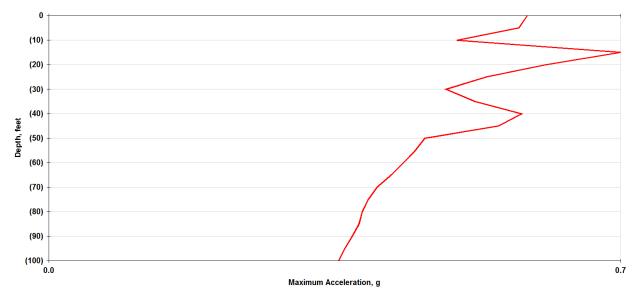


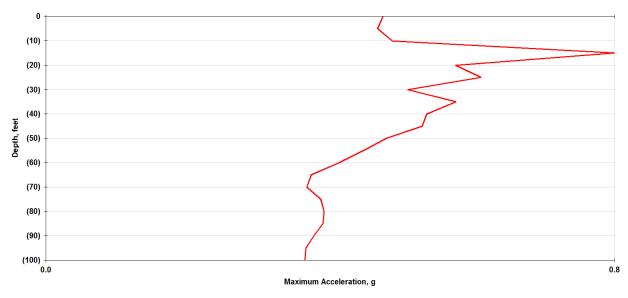


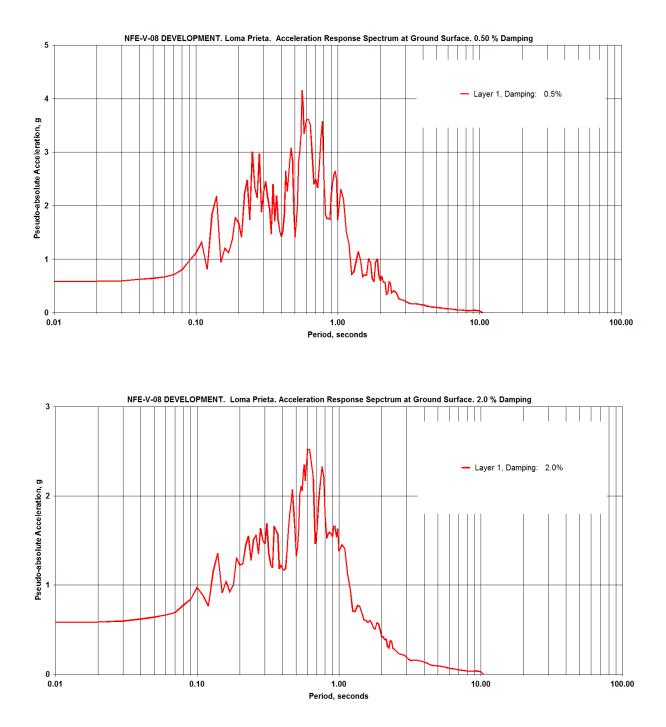
MAXIMUM GROUND MOTION ACCELERATION VS DEPTH

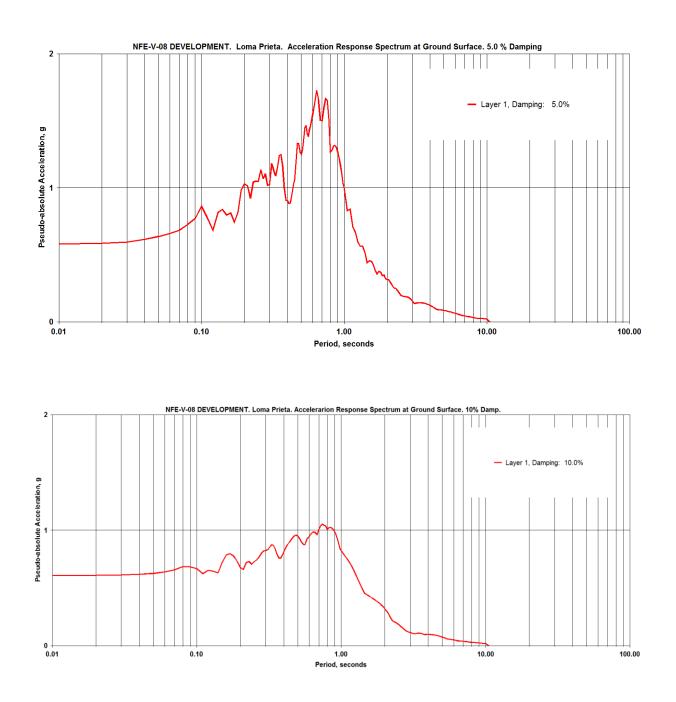


NFE-V-08 DEVELOPMENT. Loma Prieta. Max. Acc. vs Depth

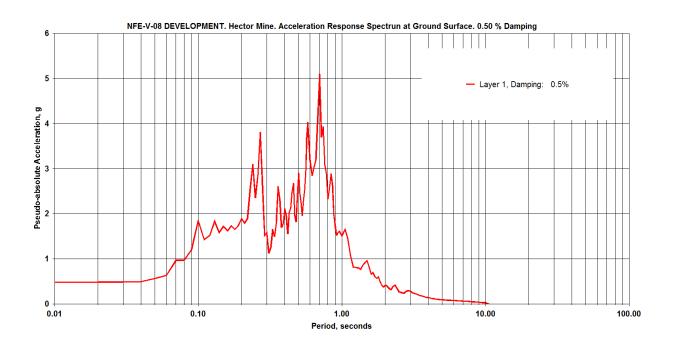


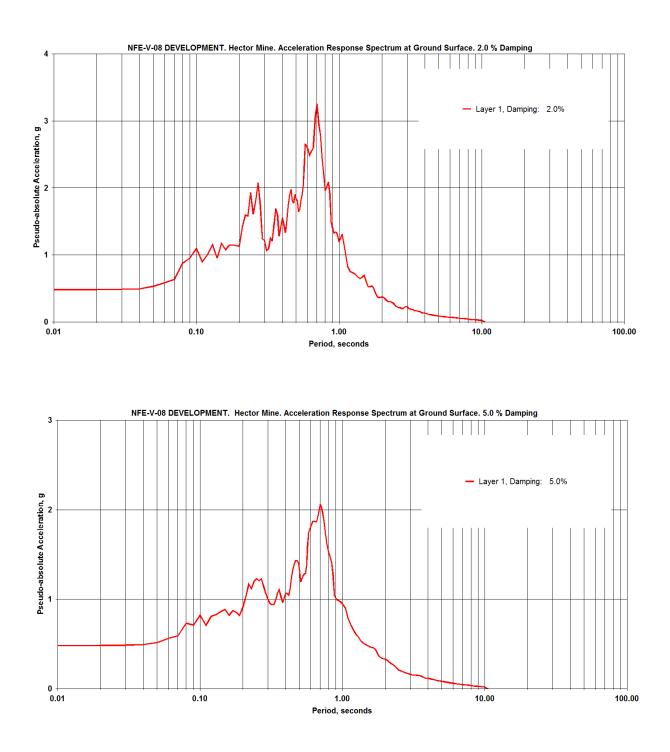

NFE-V-08 DEVELOPMENT. ChiChi Taiwan. Max. Acc vs Depth

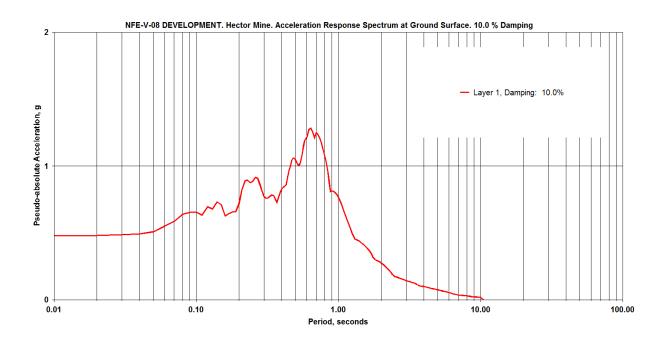

NFE-V-08 DEVELOPMENT. Cape Mendocino. Max. Acceleration vs Depth

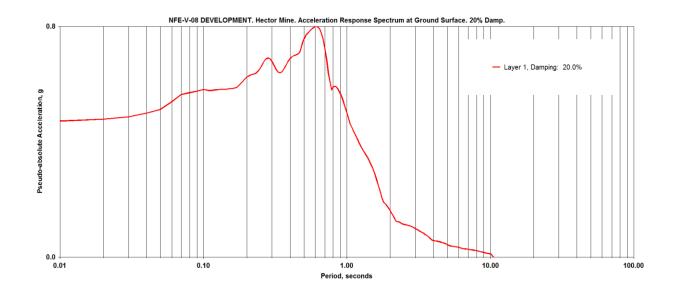

NFE-V-08 DEVELOPMENT. Sierra Mexico. Max. Acc. vs Depth

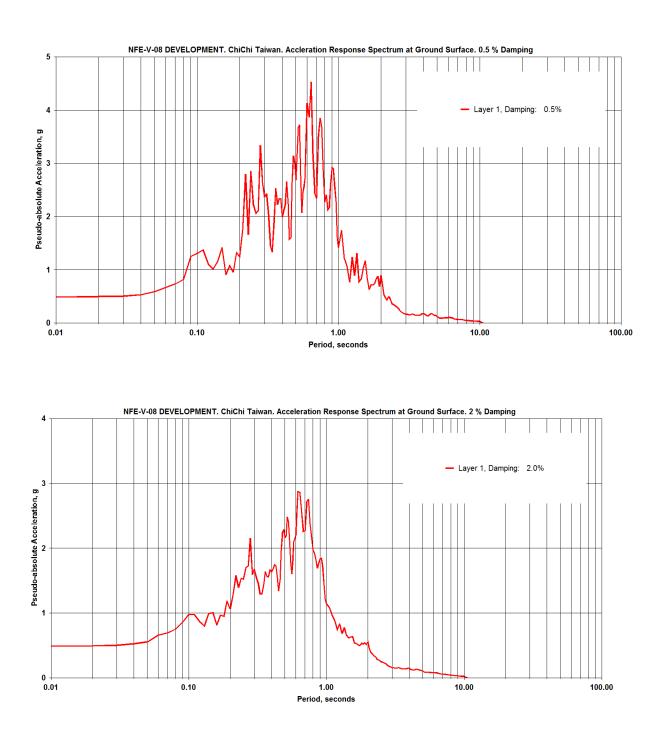
RESPONSE SPECTRA AT GROUND SURFACE

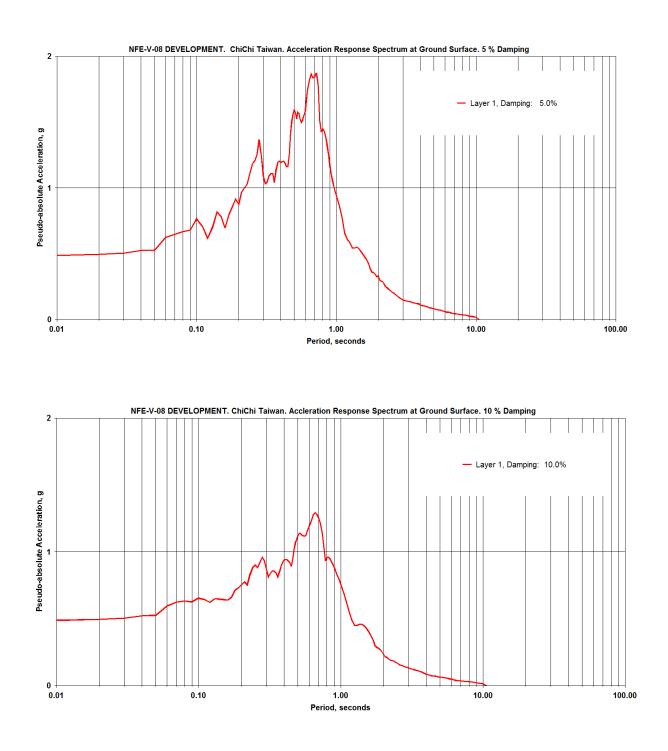


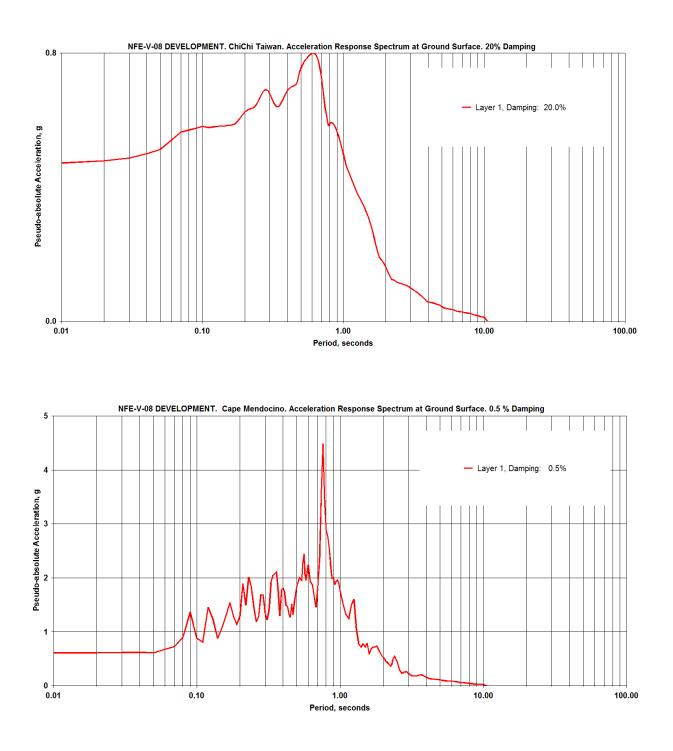


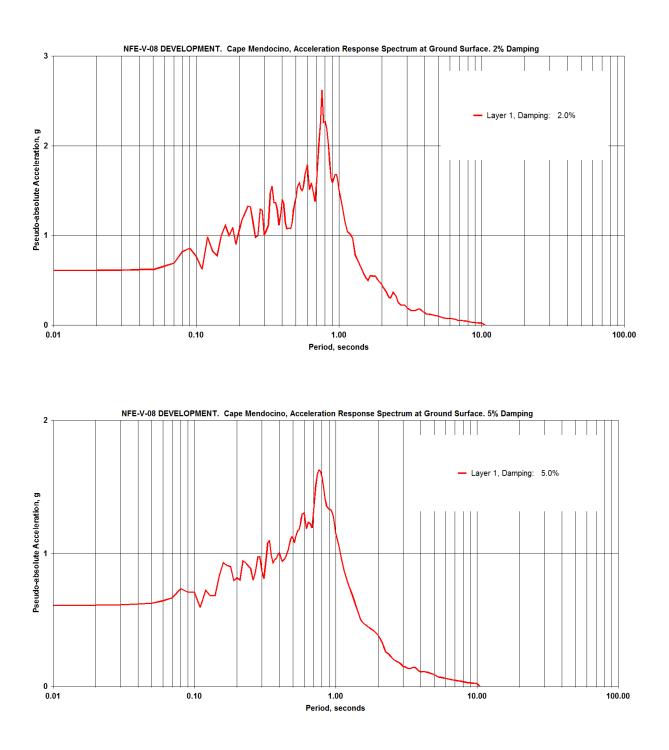


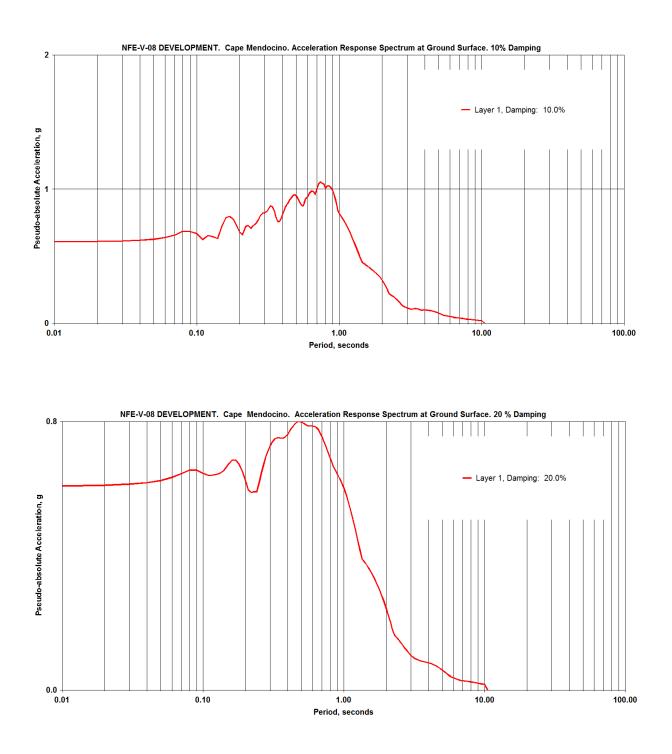


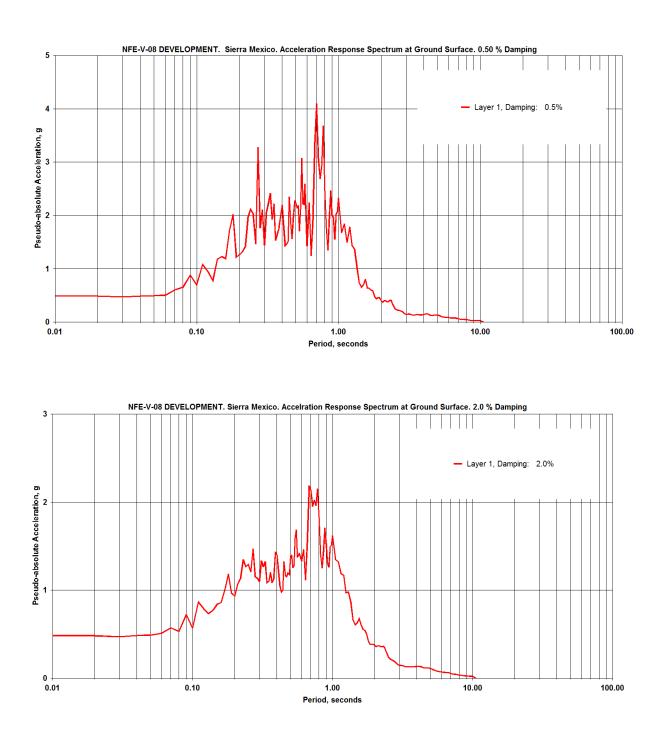


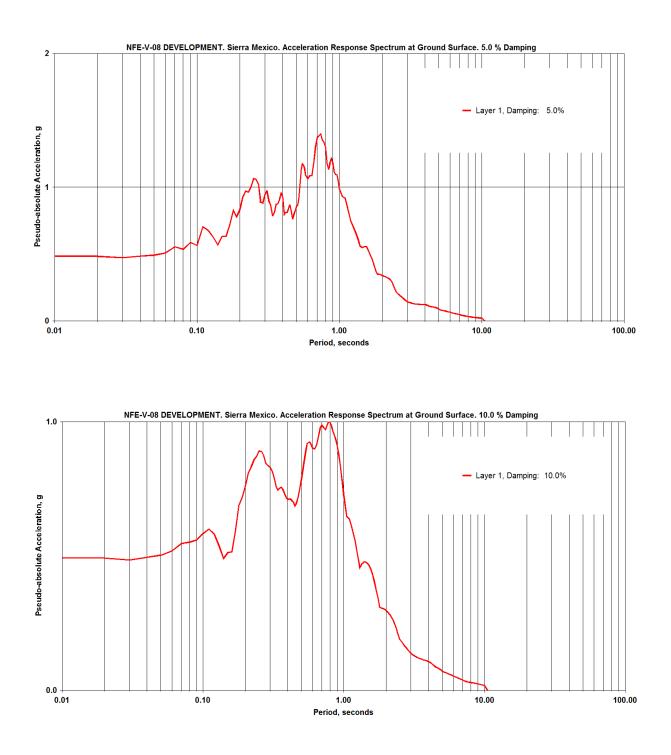


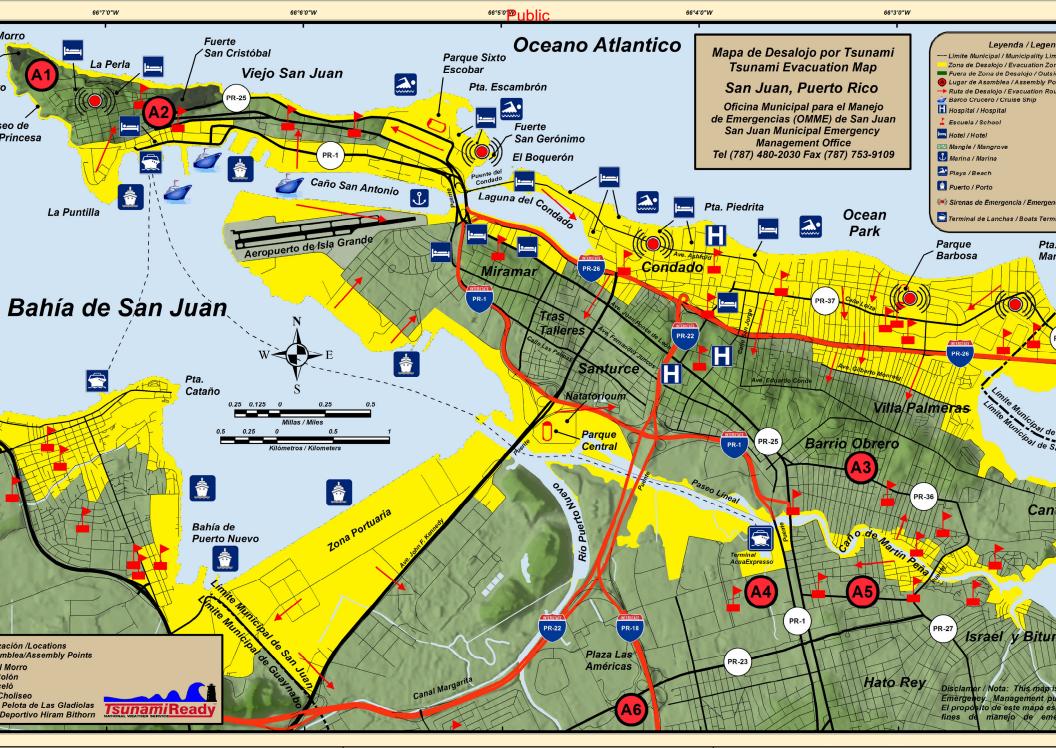




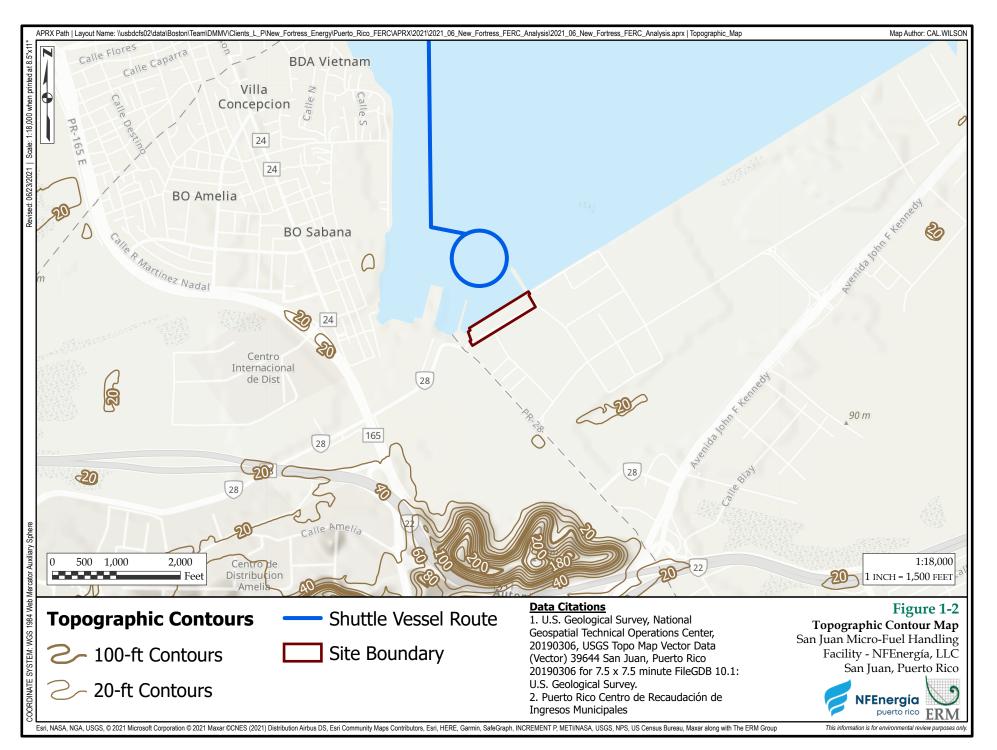








Appendix I.2



Agencia Estatal para el Manejo de Emergencias y Administración de Desastres (AEMEAD) Zona 1 Puerto Rico Emergency Management Agency (PREMA) Zone 1 Tel (787) 294-0277; Fax (787) 294-1165

Appendix J.1

Appendix J.4

<u>REPORT</u>

ON THE GEOTECHNICAL EXPLORATION PERFORMED AT THE SITE OF THE PROPOSED NFE MICROFUEL HANDLING FACILITY PUERTO NUEVO WHARF, SAN JUAN, PR

Submitted to:

Mr. Winnie Irizarry

NFEnergia

Prepared by: Carlos R. Sierra Del Llano MSCE, PE **Jaca & Sierra Engineering, PSC**

Date: March 8, 2019 Job No. 7812A

This report contains 160 pages including cover

Table of Contents:

1.0 INTRODUCTION:	2
2.0 SCOPE OF WORK:	
2.1 Field Work:	
2.2 Laboratory Work:	
3.0 SUBSOIL GENERALIZED CONDITIONS:	5
3.1 Geology:	5
3.3 Groundwater:	9
4.0 GEOTECHNICAL RECOMMENDATIONS:	
4.1 Liquefaction Potential and Seismic Settlements:	
4.1.2 Liquefaction Induced Lateral Spreading Concern:	
4.1.3 Liquefaction Mitigation:	
4.2 Deep Foundations:	
4.2.1 Field loading Tests and Quality Monitoring:	
4.3 Truck Scales, Truck Loading Skid and Pipe Racks:	
4.4 Existing Bulkhead Evaluation:	
4.4.1 Parallel Seismic Survey-Existing Bulkhead Depth Estimate:	
4.4.2 Earth Pressure Parameters on the Bulkhead:	
4.4.3 Pipe Pile "A" Frame for Lateral Support of the Bulkhead:	
4.4.4 Tieback anchors for Lateral Support of the Bulkhead:	
4.5 38 KV Electrical Substation:	
4.5 Impoundment Structure:	
4.6. Fill Placement Guidelines:	
4.7 Pavement Design Recommendations:	
4.7.1 Subgrade:	
4.7.2 Subbase:	
4.7.3 Base Course:	
4.7.4 Light Duty Asphalt Section:	
4.7.5 Heavy Duty Asphalt Section:	
4.7.6 Heavy Duty Asphalt Section II- Reinforced Section:	
4.7.6 Concrete Section:	
5.0 ADDITIONAL COMMENTS:	

Page 2 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

REPORT

ON THE GEOTECHNICAL EXPLORATION PERFORMED AT THE SITE OF THE PROPOSED NFE MICROFUEL HANDLING FACILITY PUERTO NUEVO WHARF, SAN JUAN, PR

1.0 INTRODUCTION:

The present report covers the results of the geotechnical exploration conducted at the site of the proposed energy facilities at berths A, B and C in Puerto Nuevo Wharf, San Juan, PR.

Jaca & Sierra Engineering, PSC was contracted by **NFEnergia, LLC** to perform site investigations and prepare geotechnical recommendations for the purpose of developing design drawings for the reference project.

The geotechnical exploration program was directed to obtain subsurface soil information to be utilized in the formulation of the pertinent recommendations for the intended structure foundation system.

This report references the following documents:

 Probabilistic Seismic Hazard Analysis (PSHA) and Site Specific Response Spectrum report for NFE V-08 by Terratec, Inc dated February 2018

Page 3 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

 75% design drawings submittal by Moffat and Nichol (M&N) titled NFE V-08 Berth Repair dated 2018-12-06

This subsurface investigation was conducted as a function of information given by Moffatt & Nichol (M&N), project's civil designers.

This soil report has been prepared for the exclusive use of the owner, their architects, engineers and others involved in the preparation of the design plans and specifications of the project.

2.0 SCOPE OF WORK:

2.1 Field Work:

Test borings were made in different phases, the first completed on December 2017 and the second phase in December of 2018. The first phase of fieldwork consisted of drilling seven (7) test borings: Four (4) were drilled up to 60-70 ft depth (B-1 thru B-4); two (2) to 120 ft depth (C-1 and C-2); and one (1) to 100 ft depth (SWV-1). At the location of SWV-1 a Down Hole Seismic (DHS)-ASTM D5400- test was performed. Additional field works included three (3) Cone Penetrations Test (CPT) near the locations of borings no. C-1, C-2 and B4 and a parallel seismic survey near the bulkhead at the vicinity of C-1. In addition, a total of eight (8) Shelby tube samples were extracted from cohesive soils

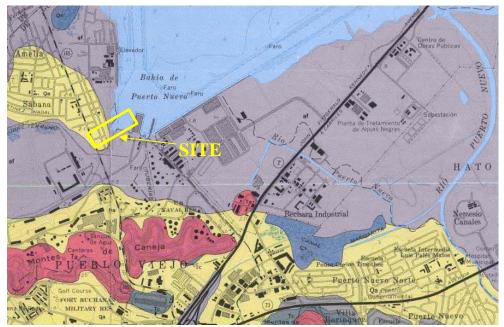
Page 4 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

within the upper 30 ft for performance of specialized soil mechanics laboratory testing, such as triaxial shear and consolidation tests.

The second phase of investigation consisted of 10 shallow borings to complete a pavement design assessment: one (1) 80 ft deep boring for the impoundment pond; one (1) 60 ft boring for the electrical substation; and two (2) borings to 30 ft depth at the proposed truck scales. In addition, ten (10) borings to 10 ft depth were made for pavement evaluation purposes. Also an additional boring was performed on the water side within the existing pile supported wharf deck. Field work also included a parallel seismic test conducted near the existing bulkhead to verify probable depth of the existing sheet piles.

In situ testing and soil sampling were achieved by means of the universally adopted Standard Penetration Test (SPT) and split spoon sampler method according to ASTM D 1586. Subsurface drilling was executed by means of the power auger method as per ASTM D 1452 using a CME-55 drill rig to drive a 3 inches ID helical auger into the ground. SPT sampling was completed with an automatic SPT hammer.

2.2 Laboratory Work:


The soil samples were saved in jars and transported to our laboratory for visual and manual description by an engineer. In the laboratory, the soil composition was identified and the presence of any organic matter or characteristic that may be unsuitable Page 5 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

for the proposed structure was observed. The laboratory tests performed were the following: moisture contents, unconfined strength, unit weight, soil classification (sieve analyses and Atterberg limits), consolidation tests, organic content, unconsolidated undrained (UU) and Consolidated Undrained (CU) triaxial tests.

The field and laboratory information was collected to prepare boring logs, which reveal the stratigraphy and soil properties at each boring explored. This report was based on the information obtained in the boring logs, laboratory tests and information submitted to us.

3.0 SUBSOIL GENERALIZED CONDITIONS:

3.1 Geology:

Figure 1: Site location in USGS geology map

Page 6 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

According to the U.S. Geological Survey (USGS) geologic map of the San Juan Quadrangle¹, the surface geology of the explored area consists of Artificial (Af) (see Figure 1). The USGS describes the mentioned deposit as follows:

Af – *Artificial Fill* (Holocene) "Sand, limestone and volcanic rock as fill in valleys, swamps and locally a part of Bahia de San Juan."

Based on our interpretation of the stratigraphy the following units are also present

below surface in the order of mention:

Qs-Swamp Deposits (Holocene)-"Sand, muck and clayey sand; generally underlain by peat formed in mangrove swamps. Most areas mapped as artificial fill are underlain by swamp deposits."

QTt- Older Alluvial and Terrace Deposits (Pleistonce and Pliocene)- "Clay, silty and sandy, mainly red or mottled red and light gray."

Tc-Cibao Formation (Miocene and Oligocene) "Chalk, soft, pale gray limestone and very pale orange sandy clay."

¹ MH Pease Jr. and W.H. Monroe. (1977) Geologic Map of the San Juan Quadrangle, Puerto Rico. United States Geological Survey(USGS), Department of Interior, Reston, VA-Map I 1010

Page 7 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

3.2 Stratigraphy:

In general, soil stratigraphy is characterized by an upper man-made fill, underlain by soft clayey swamp deposits with occurring sand lenses or pockets of variable thickness, followed by older alluvial and terrace deposits found in consolidated state. The limestone horizon, interpreted to consist of the Cibao formation, occurred at depths of 70 to 80 ft and extending to the bottom of the deepest boring of 120 ft beneath ground surface.

Stratum no. 1: Man Made Fill/Hydraulic Fill

The upper stratum consists of man-made fill. This upper fill can be subdivided into two different descriptions, the granular surface fill comprised of gravelly sand mix used for pavement base and sub-base and the underlying sandy hydraulic dredge fill used to reclaim land over the wharf area. The upper coarse granular fill had variable thickness from 2 to 4 ft thick. The SPT N values, which were typically over 20 blows/ft, indicated medium to dense relative density.

The hydraulic fill consists of sandy material extracted from the Bay of San Juan during dredging and deposited within areas to be reclaimed. Our subsurface investigation uncovered that the dredge fill has a thickness in the order of 30 ft near the existing bulkhead and about 9 to 10 ft in other further inland parts of the site. SPT N values recorded were variable from values in the order of WH to 10 blows/ft. The SPT N Page 8 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

values generally had a decreasing pattern with the depth. High SPT values occurring at certain depths are due to the presence of shell and coral fragments larger than the sampler size which cause an unrealistic high value which is not necessarily a representation of fill material density.

Stratum no. 2: Soft Deposits- Silt, Clay and Sand

The second stratum is mainly composed of swamp or bay bottom deposits. This stratum chiefly occurs as a very-soft to soft consistency clayey silt to silty clay with traces of organic matter. Sand and shell fragments were detected mostly as lenses or pockets. This stratum tends to have medium consistency or certain degree of over-consolidation near the transition with the upper fill and likewise below near the older alluvial deposits below. Elsewhere within this horizon, the soil was found to be very soft and unconsolidated. SPT N values for this stratum ranged from Weight of Hammer (WH) to values typically below 10 blows/ft. Shelby tube samples were extracted mostly from this stratum for the evaluation of its consolidation properties. Moisture contents for this unit varied from about 40% to 80%, with most values in the range of 60% to 80%, which is an indication of potential for soil compressibility.

Stratum no. 3: Stiff Silty Clay, Sandy Clay, Clayey sand

The third stratum is mainly composed of older consolidated alluvial or terrace deposits. This stratum was found a stiff to very stiff clayey silt, sandy clay, clayey sand

Page 9 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

to silty clay. SPT N values ranged from about 10 to 30 blows/ft. This unit ranged in depth mostly between 30 to 70 ft depth.

Stratum no. 4: Weak Limestone

The above described layers are overlain by a weathered limestone formation found at depths in the order to 70 and 75 ft beneath ground surface, at the locations of borings no. 1, C-2 and SWV-1. SPT N values for this unit varied widely mainly due to weak strength characteristic of the formation, high level of weathering and solution voids and soil filled cavities. Blow counts were found to range from values in the high 10s to over 100 blows/ft (ie.50 blows/4"). This limestone was found in a very weak state. Coring was attempted, but no recovery was obtained. The composition of the formation is that of a partly and moderately cemented limestone gravel, sand and silt rather than rock. This unit shall not be regarded as bedrock.

3.3 Groundwater:

According to the observations made during the subsoil exploration, groundwater was found at depths of 6 to 8 ft beneath existing paved surface. Groundwater level may rise during and after prolonged rain events and tidal fluctuations. It is interpreted that ground water is within 1-3 ft above mean sea level. Perched ground water will occur within sand pockets overlying clayey soils. Furthermore, it is our opinion that ground water level will rise to near ground level during storm related surge and heavy rains

Page 10 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

The above information corresponds to a general description of the subsoil conditions of the area explored. However, for detailed description regarding the soil profile, please refer to the enclosed boring logs on Appendix A.

4.0 GEOTECHNICAL RECOMMENDATIONS:

Based on information obtained from the test borings concept, it is understood that the site will be developed with industrial structures. As will be explained in the following sections, the potential for liquefaction and settlement prone soils will require for all heavy structures to be supported over deep foundations. Any light ground bearing structure will need to be evaluated in a case by case basis. Nevertheless, regardless of the structure weight, the ground will be prone to significant subsidence during strong ground motions.

4.1 Liquefaction Potential and Seismic Settlements:

Analysis of liquefaction was made using SPT and CPT data. Based on the site specific seismic hazard assessment, the PGA for 10% probability of exceedance in 50 years (5 % damping) is 0.26 g. Analysis was made using Seed et al (2004) criteria for liquefaction exhibiting potential for liquefaction for depths within the upper 20 to 30 ft within the zone near the existing bulkhead that was backfilled with sandy hydraulic fills. Effects of liquefaction include excessive ground settlement and lateral spreading. The liquefaction potential with regards to boring location is described in table no.1, below:

Page 11 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

Table 1: Liquefaction Potential per Boring

Boring no.	Liquefaction Potential	Depth Range of Liquefaction	Comments
SWV-1	Moderate	14-29	Soft Silt may exhibit seismic settlement; high fines content reduces potential for liquefaction
B-1	Low to Moderate		Soft Silty soils may exhibit seismic settlement
B-2	Moderate to high	10-19	High potential within saturated loose hydraulic fill
B-3	High	5-34	High potential within saturated loose hydraulic fill-Near Bulkhead
B-4	High	10-35	High potential within saturated loose hydraulic fill-Near Bulkhead
C-1	High	5-29	High potential within saturated loose hydraulic fill-Near Bulkhead
C-2	High	6-30	High potential within saturated loose hydraulic fill-Near bulkhead
SC-1	High	6-30	High potential within saturated loose hydraulic fill
SC-2	Moderate	15-25	Soft Silty soils may exhibit seismic settlement; high fines content reduces potential for liquefaction; sand layer 19-24 ft
B-5	Low		Mostly clayey soils below mudline
B-6	Moderate to low	6-14	Dense sands with SPT N>25 exhibit conditions that will mitigate potential of occurrence
B-7	Low	4-6	Thin loose sand layer 1-2 ft over ground water level. Profile is governed by clayey soils

Page 12 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

<u>4.1.2 Liquefaction Induced Lateral Spreading Concern:</u>

Liquefaction prone soils are mostly found close the existing bulkhead area where hydraulic fills from dredging where deposited. At most locations it is noted that the subsurface profiles have an increased depth of liquefaction prone sand towards the existing bulkhead. This creates the situation that as the sandy soils liquefy, by losing their internal friction, these would displace laterally by gravity over the underlying inclined soft clay layer causing ground surface to exhibit extension cracks parallel to the bulkhead (perpendicular to slope direction). This would also cause a great overstress on the bulkhead that may lead to its failure.

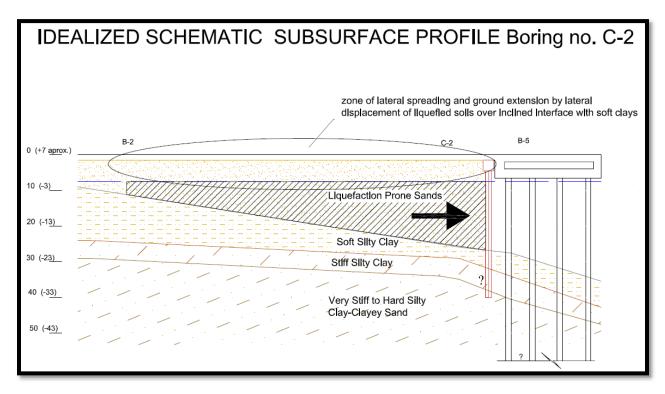


Figure 2: Schematic subsurface profile exhibiting conditions for lateral spreading

Page 13 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

<u>4.1.3 Liquefaction Mitigation:</u>

Liquefaction shall be mitigated by ground improvement methods such as stone columns (vibro-replacement) or rammed aggregate pier methods such as Impact Piers by Tensar's Geopier patented methods, where deemed necessary to protect wharf infrastructure and seismic safety of the facilities. These methods commonly entail stone columns arranged in an array having center to center spacing ranging from 6 to 9 ft. The effectiveness of ground improvement is verified by performing pre and post treatment Cone Penetration Tests (CPT) or Standard Penetration Tests (SPT) made to validate adequacy of stone column or aggregate spacings. If any of these methods are implemented, at least two (2) test areas shall be established by geotechnical engineer prior to proceeding with ground improvement.

4.2 Deep Foundations:

Heavy loaded structures or any structure that is important and should remain safe against settling excessively or displacing due to seismic liquefaction, should be supported over deep foundations. These structures are understood to consist of the truck loading suction drum, gas combustion units, regasification suction drum, fire water tanks, gas fired vaporizers, operations building and other structures. Any structure supported over shallow foundation will likely lose foundation support and become ruined during seismic liquefaction.

Page 14 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

Pile size will be a function of axial and lateral loads. The proposed piles will develop most of their capacity in friction within stiff clays and weak limestone horizon.

Based on the current 75% project plans, the existing pile supported berth will be increased of its capacity by installing new 36 inch diameter steel pipe piles over the existing concrete piles. We have been informed by M&N that, based on a diver survey commissioned by the owner, there should not be any rocks or obstruction that would impede pile installation beneath the existing berth. The new 36 inch diameter (t=0.5 inches) steel pipe pile depths are estimated to be 70 ft depth with 232 kips allowable compression and 50 kips allowable tension.

Inland structures can be supported by driven precast concrete piles with minimum diameter of 12 inches.

The ultimate axial resistance in skin friction for different driven piles was evaluated using *Ensoft APile v2018* software. The results are shown in Appendix C. In order to obtain allowable design loads a Factor of Safety of 2 can be considered for the provided ultimate loads.

Page 15 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

4.2.1 Field loading Tests and Quality Monitoring:

The suitability of the pile driving hammer should be verified before construction by performing a Wave Equation Analysis (WEAP), which can also guide on the possibility of pile damage during installation.

The pile driving operations are to be preceded by the installation of at least two (2) indicator piles. The indicator piles shall be selected from the production pile clusters and should not be judged as a separate item from production piles. We should be contacted before test pile installation to select which test piles will yield the most relevant information. Initially, indicator piles should be driven up to the depths coordinated with the geotechnical engineer in consideration of the final chosen pile type, capacity and location.

A field load testing program shall be planned to confirm axial capacity of driven piles. We recommend a minimum of two (2) test piles distributed per each pile type and per each structure. The test piles shall be subjected to high strain dynamic pile testing as per ASTM D4945 with Pile Driving Analyzer (PDA) system. The PDA test locations shall be selected by the geotechnical engineer based on the results of the indicator pile installation. Based on the results of the above field testing, the geotechnical engineer will prepare a pile installation criteria.

Page 16 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

Production pile installation shall be monitored continuously by a geotechnical engineering technician following guidance from a geotechnical engineer for the implementation of the pile installation criteria developed for each pile type and structure.

4.3 Truck Scales, Truck Loading Skid and Pipe Racks:

Two (2) borings were completed at the site of the propose truck scales. These were labeled as boring no. SC-1 and SC2. The borings exhibit varying conditions. SC-1 (closer to the berth area shows an upper granular fill material with dense relative density followed by a loose sand (hydraulic fill) with SPT N values ranging from 3 to 4 blows/ft indicating loose relative density extending to 20 ft beneath ground surface. This lose sand is followed by a soft silty clay extending up to 29 ft bgs where a stiff sandy clay is found.

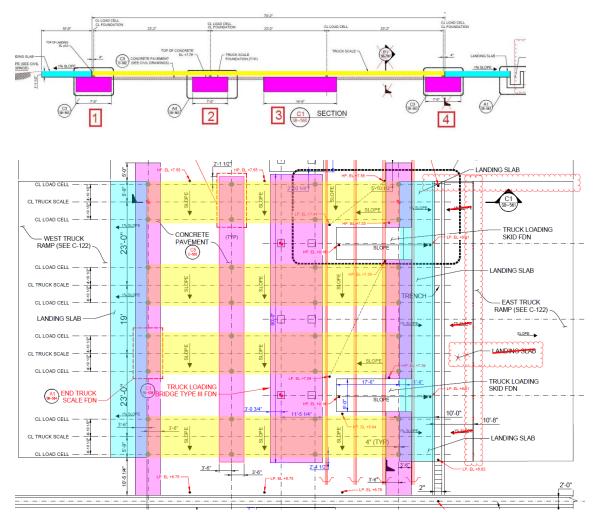
On the other hand, boring no. SC 2 had 8ft of sandy clay and gravel (not hydraulic fill) followed by a very soft compressible silty clay with Weight Hammer (WH) N value from 8 to 19 ft BGS. This unit is underlain by 5 ft of loose sand and then a medium dense clayey sand at 24 ft depth BGS.

In this profile, boring no. SC-1 poses risk for seismic liquefaction from 5 to 20 ft depth and SC-2 exhibit potential for consolidation settlements from soft layers found from 8 to 20 ft depths.

Page 17 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

Ground water at both borings was detected at 6 ft beneath ground surface.

Based on information provided to us by M&N, the structure is proposed to be supported over continuous foundations with 1,000 psf (foundation labeled 2 and 3 in figure above) and other foundations (1 and 4) with higher contact pressures. In consideration of the conditions, it is our opinion that the foundations 1-4 shall be sized to not exceed a bearing pressure of 2,000 psf.


In order to improve soil conditions at the site, which have been affected by demolition and excavation of utilities and underground structures, we recommend the following:

- Perform 2.5 ft undercut below proposed footings extending 3 ft beyond the foundations;
- Compact and stabilize exposed grade, if necessary, use gabion size stone beds at weak spots;
- 3. Place a geogrid BX 1100 or equivalent;
- 4. Place engineered fill up to final grade per fill placement guidelines.

Notwithstanding of the superficial ground improvements, long term settlements from deeper soft soils consolidation could occur at estimated magnitudes of 1 to 2 inches with an approximated 50% being differential subsidence.

Page 18 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

Figure 3: Proposed foundations for the Truck Scales structure

The owner and project designer should understand that this and any structure over shallow foundations on this site will experiment settlement and distortion to the extent of being ruined during a strong ground motion event producing liquefaction.

If this is not acceptable, the site can be improved with stone columns or aggregate piers to mitigate the occurrence of liquefaction. Also, the structure can be supported over

Page 19 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

deep foundations. Nevertheless, lateral spreading will cause differential lateral pile deflection that would cause damage to the structure as the spreading ground drags the piles with it.

4.4 Existing Bulkhead Evaluation:

Based on information provided to us by M&N, the existing bulkhead section consists of a MZ 38 sheet pile section that is laterally restrained in the top against lateral movement by the existing pile supported berth.

<u>4.4.1 Parallel Seismic Survey-Existing Bulkhead Depth Estimate:</u>

A Parallel Seismic Test is a non-destructive methodology that is used to define the length of deep foundations in cases where construction plans are not available or when other techniques such as Pile Integrity Testing (PIT) cannot be implemented due to the length and slenderness of the foundations.

This technique consists on generating an elastic wave through the foundation by impacting the top of the element with a 12 lb hammer. A geophone or receiver was placed down the borehole parallel to the bulkhead at a distance of about 3 ft in order to take measurements of the first arrivals of the elastic P-waves generated by the hammer impact. Measurements are taken at 3 ft intervals. The recorded travel times are then plotted with the corresponding receiver depth.

Page 20 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

The energy generated by the hammer impact generates a wave in the soil similar to a velocity of a wave traveling through steel (sheet pile). Below the tip of the sheet pile, the first arrival is delayed due to the wave traveling through soil at a lower velocity. In a technique known as ray-tracing, wave travel times are plotted versus receiver depth. Any change in slope that occurs in the plot is a result of the pile tip acting as a point diffractor, which indicates the end of the pile. The results are shown in figure 4, below.

Figure 4: Parallel Seismic Test Result

Page 21 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

The upper part (shown in red) corresponds to the higher wave velocities traveling through the steel element, while the lower portion (shown in green) corresponds to the lower wave velocities understood to be traveling through soil. As observed on the results shown above, there is a marked change in slope at an approximate depth of 26 ft which could potentially be the bottom of the sheet pile, but seems to be too short. With the present scope and its inherent physical limitations, we could not confirm existence of sheet pile below 26 ft depth at two (2) test locations. Further studies are recommended since the sheet pile should be 40 ft or deeper to meet criteria for stability. Additional testing may consist of Crosshole Seismic from land and sea side or parallel seismic from sea side (if possible).

<u>4.4.2 Earth Pressure Parameters on the Bulkhead:</u>

In order to evaluate the effects of static earth pressures with surcharge for temporary (during construction), permanent conditions, seismic pseudo static and liquefaction, the following parameters are recommended:

Page 22 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

Table 2: Active Side Earth Pressure Parameters (conditions in the vicinity of borings C-1, C-2, and B-5)

Stratum	Depth beneath ground surface(ft)	Cohesion (psf)	Angle of Internal friction	Effective Unit Weight (pcf)		
Fill: Sand and Gravel	0-7	0	28	115		
Hydraulic Fill: Loose Sand and Silt	7-35	0	28	40		
Clayey Sand	35-45	0	32	50		
Very stiff Silty Clay	45-70	150	30	55		
Weathered Limestone	70+	500	40	70		

- Water level behind bulkhead at 7 ft beneath top of bulkhead or ground surface;
- Seismic Kh=0.26; Kv=0.13;
- Liquefaction up to 35 ft (liquefied mass density 95 pcf, c=0, phi=0);
- Ground surface assumed at +7.25 per project drawings.

Stratum	Depth beneath Berth surface (ft)(+7.25ft)	Cohesion (psf)	Angle of Internal friction	Effective Unit Weight (pcf)
Soft-Med Stiff Clay	22-34	0	27	35
Med Stiff Silty Clay	34-40	100	28	50
Very Stiff Silty Clay	40-60	500	28	55

Table 3: Passive Side Earth Pressure (Drained Parameters)

Page 23 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

The following comments and recommendations are provided for bulkhead analysis:

- For seismic pseudo static analysis the PGA value for 10% probability of exceedance in 50 years is 0.26g;
- The water level can be assumed at 6 ft on both sides (active and passive);
- Liquefaction condition considered up to 35 ft depth, unless ground improvement is performed.
- Soil depth at mudline level currently at -22 ft elevation under existing berth should consider projection of scour depth. The upper 4-6 ft below mudline consist of very soft drift sediments.

4.4.3 Pipe Pile "A" Frame for Lateral Support of the Bulkhead:

The project design team has proposed a deadman supported by A frame with pipe piles as an option for anchoring the bulkhead structure. This deadman will act to restrain the top of the bulkhead against lateral displacement. Axial and lateral capacity for the proposed A frame battered piles is provided in Appendix A. Pile length shall be designed per corresponding required axial compression and tension loads. Pile drivability shall be confirmed by Wave Equation analysis. Pile capacity shall be confirmed by doing at least (2) PDA Tests on production piles.

Page 24 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

4.4.4 Tieback anchors for Lateral Support of the Bulkhead:

During project design development, tie back anchors were considered, but the design team selected the A frame concept since the load required resulted to be relatively high and soil liquefaction and deep soft soils made required for relatively long tieback anchor elements which would also tend to have high elastic deformation due to steel rod lengths. Nevertheless, we supply the following recommendations for tie back anchors in case it is considered.

- 1. The recommended angle of installation should be 30 degrees from horizontal
- The minimum un-bonded length should be 50 ft to maintain bond zone away from liquefaction prone soils and soft strata.
- 3. The bond length zone shall be constructed with temporary casing and pressure grouting method.
- 4. The bond strength will greatly depend on the drilling and grouting techniques. Average ultimate bond strengths of 20 to 40 psi are achievable on the stiff to very stiff silty clay found at elevations of -30 ft or deeper. Values of 100 to 150 psi are achievable on the weathered limestone at near -70 ft elevation (at 30 degrees anchor lengths over 140 ft). Final anchors lengths shall be obtained by testing.
- 5. Anchor Testing shall be in accordance to Post Tensioning Institute Recommendations for Prestressed Rock and Soil Anchors (PTI DC35.1-14). A minimum of two (2) performance tests shall be made to establish final anchor lengths on sacrificial anchors. Also, proof test shall be completed on 15% of the production piles.

Page 25 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

6. A minimum safety factor of 2 shall be considered for permanent anchors.

4.5 38 KV Electrical Substation:

A 38 KV Electrical Substation is proposed at the projects southwest side near the project entrance (Figure 5). It will include a transformer and post supported substation. Per information supplied by Lord Electric (email from Mr. Javier Perez dated Jan 28, 2019) the proposed transformer will weigh 31,000 lbs and has a surface contact area of 83 inches by 67 inches. The transformer will have concrete base understood to be larger than the support base. Assuming the support base area, the contact stress will be near 800 psf. The electrical substation frame will have post supports weighing 8,425 lbs.

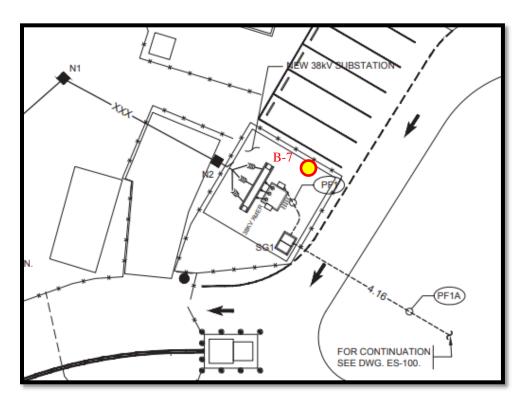


Figure 5: Electrical Substation location and test boring

Page 26 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

Boring no. B-7 was completed near the electrical substation (figure 5). This boring uncovered a gravelly sand fill extending to 2 ft depth followed by a silty clay with shell fragments having medium consistency up to 4 ft. Then a 2 ft sand with shell fragments was detected from 4 to 6 ft depth. This stratum overlies a very soft silty clay from 6 to 24 ft depth followed by a stiff to very stiff silty to sandy clay up to the end of boring at 60 ft. The ground water was found at 5 ft depth.

The soil conditions from 4 ft to 24 ft have poor supporting capacity and will consolidate upon increase in stresses. Nevertheless, the proposed structure are relatively light. The ground elevation at that site is near 8 ft, and is expected to remain near that level. The following recommendations are provided for foundation support and ground improvement:

The transformer pad and any other foundation for light structures shall be designed for a contact pressure not exceeding 500 psf. We recommend an undercut of 1 ft beneath bottom of foundation pad and replacement with engineered fill per fill placement guidelines. The substation posts can be designed for shallow pylons or foundations. The skin friction of the ground within the upper 5 ft can be taken as 300 psf. Discard the upper 2 ft. The ground water is at 5 ft and any excavation below 4 ft will have a tendency to collapse.

Page 27 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

4.5 Impoundment Structure:

The impoundment structure consists of a 15 ft by 30 ft outer dimension pit made of reinforced concrete walls and bottom foundation. The proposed bottom of foundation is at -7.55 ft elevation. Therefore, the below ground foundation depth will be 15.55 ft. Test boring no. 6 was completed at the proposed structure location. The soil profile is defined by an upper sandy gravel fill followed by dense sand layers up to 14 ft depth. This sand unit is followed by a soft silty clay which extends to 34 ft beneath ground surface which us underlain by a stiff to very stiff silty clay extending to the end of boring at 80 ft depth. The ground water was found at near 5 ft beneath ground surface or at elevation +3.

The bottom of foundation will occur over a very soft silty clay. The ground water level at this location was found 11 ft over the base of the impoundment structure. For design purposes, we recommend to assume groundwater at +7 ft or 1 ft beneath ground surface accounting for extreme storm related surge and heavy rain. With this in consideration, the hydrostatic pressure acting at the base of the impoundment will be 15 ft water head or 936 psf (421.2 kips gross uplift force). The structure shall be designed to counteract net buoyancy, as well as the unbalanced hydrostatic pressure acting against the side walls for the condition of the impoundment being empty. In order to counteract net buoyancy uplift loads, the structure can be supported over deep foundation such as Page 28 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

12 inch or 14 inch diameter precast concrete piles, anchoring the excavation sheet pile wall(permanent) or providing and extension of the foundations beyond the perimeter to create a key. For the perimeter foundation key option, the backfill unit weight shall be taken as 45 pcf for the fully submerged extreme condition.

For construction, a sheet pile will be required with a minimum embedment of 35 ft beneath ground surface. The sheet pile shall be designed considering water table at +2 level (4 ft beneath ground surface) and using the following earth pressure parameters for temporary condition:

Stratum	Depth beneath ground surface (ft)	Cohesion (psf)	Angle of Internal friction	Effective Unit Weight (pcf)		
Moist Sandy Fill	0-4	0	30	125		
Saturated Fill	4-14		28	55		
Soft Silty Clay	14-34	250	0	40		
Stiff Silty Clay	34+	2000	0	65		

Table 4: Temporary sheet pile wall earth pressure parameters for the impoundment structures

For the permanent condition an equivalent pressure of 83 lb/sq.ft/ft can be considered for the extreme condition, which values includes hydrostatic earth pressure and soil pressures for saturated backfill and elevated ground water table.

Page 29 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

4.6. Fill Placement Guidelines:

The site was occupied by various structures including warehouses, slabs and utilities. Once the required excavations have been completed and general site clearing has been achieved including pavement and unsuitable soil removal, a proof rolling must be performed with a loaded truck within the footprint areas of the structures and surfaces to be paved in order to detect weak spots. Any weak spot must be excavated and replaced with engineered fill. The exposed grade must then be compacted to an unyielding surface. Engineered fill shall then be placed up to final grade following the fill placement guidelines provided herein:

- The fill material shall consist of well graded granular soil complying with AASHTO Classification A-2-4 or A-1 (GM, GW, SW or SM according to Unified Soil Classification). This material should be approved by the consultant geotechnical engineer.
- 2. Fill material shall be placed in layers not exceeding eight (8) inches of thickness (as measured before compaction) on a surface free of water and each layer shall be compacted to a minimum of 95% based on its maximum dry density determined from a Modified Proctor Compaction Test, according ASTM D 1557. If portable compaction equipment (walk-behind rollers, plate compactors, among others) will be used, the thickness of the fill lift layers

Page 30 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

should be reduced to 4 inches. This is required due to its relatively low compaction energy.

The construction of the fill layer shall be made monitored by third party geotechnical laboratory. The presence of a field soil technician shall be continuous from the initiation of site clearing until the final grade is reached.

4.7 Pavement Design Recommendations:

Following requests and approved scope of work by Moffat and Nichol, we have completed pavement evaluation and design sections for the project. This evaluation is based on the following documents provided to us:

- 1. Traffic Plan Sketch by M&N;
- Traffic Loading information provided by M&N (email from Adam Crouch dated Dec. 7, 2018);
- Project Civil Drawings by M&N; 75% delivery dated Dec. 06, 2018.
 Based on document reference no.2, above, the design loads provided and

considered for this design are as follows:

- 96 trucks/day @ 80,000 lbs loaded (25,000lbs unloaded);
- 20-ton mobile crane (occasional for equipment maintenance).

A total of ten (10) borings to 10 ft depth were completed at different areas of the site which were expected to have traffic base. The borings made for pavement

Page 31 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

assessment are labeled as #-P (ie. 5-P). Refer to boring logs and boring locations plan in Appendix B for further details. At each boring location, the asphalt thickness was measured by coring and a Dynamic Cone Penetrometer (DCP) test were performed at sub-base level.

ID	Surface Material	Thickness (inches)	DCP Penetration Depth measured from the surface	Average CBR as per DCP Tests
1	Asphalt	8.0	11.25*	99+
2	Asphalt	6.0	9.75*	99+
3	Asphalt	2.0	18.5	35
4	Asphalt	2.0	4.75*	99+
5	Concrete	4.0	6.25*	99+
6	Concrete	4.0	5.5*	99+
7	Concrete	3.0	7.0*	99+
8	Asphalt	12.0	16.5*	99+
9	Asphalt	-	1.5*	99+
10	Asphalt	12.0	15.75*	99+

Table 5: Existing Pavement Thickness Determination and DCP Test Results

Dash Symbol (-) indicates the surface was exposed Asterisk Symbol (*) indicates DCP Refusal

From the obtained information of the boring logs as well as the DCP tests we can consider that the existing sandy fill is suitable for the construction of the proposed pavement and other elements of the project. The following sections provide our recommendations and strength parameters for the design. Page 32 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

The soil samples obtained uncovered that the pavement structure is constructed over a heterogeneous sub-grade consisting mostly of a granular man-made fill profile ranging from A-2-6, A-2-4 to A-1. . As shown above, on table 1, field CBR test results exhibit values higher than 90 with the exception of number 3. All CBR values were obtained using the DCP correlations as per ASTM D6951. According to the collected data and analysis a CBR of 30 may be used for design purposes. This is applicable as long as these are densified to at least 95% of the maximum dry density and corresponding optimum moisture content as per ASTM D1557. In the event that a rigid pavement will be designed a Modulus of Subgrade Reaction (k) a value of 350 pci as a lower bound value and 450 as an upper bound value. In consideration of limited observations and heterogeneity, lower bound values are recommended unless further tests are performed.

Based on the obtained results and performed tests, a subgrade CBR value of 20 can be assumed for compacted subgrade soils under the design pavement section.

4.7.1 Subgrade:

After the initial site clearing and fill placement guidelines have been completed, the exposed grade along the site will consist of insitu man-made fill soils. For most cases the subgrade should consist of medium dense sands, a CBR value of 20 or a modulus of subgrade reaction, k, of 100 psi/in of can be considered.

Page 33 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

4.7.2 Subbase:

Subbase may consist of a material with an AASHTO classification of A-1 to A-2-4. The fill must be compacted to 95% of its Modified Proctor (ASTM D1557) maximum dry density. In-situ soils can be used for this purpose provided their AASHTO soil classification complies with the above requirement. Subbase course should yield a minimum CBR value of 20.

4.7.3 Base Course:

Aggregate base course should consist of crushed rock or gravel with a minimum size no larger than 2 inches. Gradation should not exceed 50% of sand and fine content should not exceed 5%. Base course shall be compacted to 97% of the Modified Proctor maximum dry density (ASTM D1557) and placed as per fill placement recommendations in this report. The table below provides the gradation requirements for the recommended base course material as per the standard specifications of the Puerto Rico Highway and Transportation Authority. Class A or B are acceptable.

Page 34 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

Sieve Designation	Percentage of Weight Passing by Sieve						
Grading Class	Α	В					
2"	100	-					
1-1/2"	-	100					
1	50-80	-					
1/2"	-	40-75					
No. 4	20-50	30-60					
No. 10	-	_					
No. 200	5-12	5-12					

Table 6: Grading for aggregate base course

4.7.4 Light Duty Asphalt Section:

LIGHT DUTY FLEXIBLE PAVEMENT (Un-Reinforced)								
Pavement Layer	Thickness	Minimum Requirements						
S-1 Asphalt Surface Course	1.5 in minimum	93%min-97%max field density per Laboratory Marshall						
B-1 Asphalt Base Course	4 inch minimum	93-97% field density per Laboratory Marshall						
Aggregate Base Course	8 in minimum	PRHTA Class A or B Aggregate Base Course compacted to 97% modified proctor						
Subbase Course	AS REQUIRED TO ACHIEVE F.G.	Surface Compaction and Proof rolling up to a CBR of 15						

4.7.5 Heavy Duty Asphalt Section:

This section is applicable to all areas where loaded and unloaded truck traffic is expected.

Page 35 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

HEAVY DUTY FLEXIBLE PAVEMENT (Un-Reinforced)								
Pavement Layer	Thickness	Minimum Requirements						
S-1 Asphalt Surface Course	2 in minimum	93%min-97%max field density per Laboratory Marshall						
B-1 Asphalt Base Course	6 inch minimum	93-97% field density per Laboratory Marshall						
Aggregate Base Course	8 in minimum	PRHTA Class A or B Aggregate Base Course compacted to 97% modified procto						
Subbase Course	AS REQUIRED TO ACHIEVE F.G.	Surface Compaction and Proof rolling up to a CBR of 15						

4.7.6 Heavy Duty Asphalt Section II- Reinforced Section:

This section is applicable to areas where:

- 1. Loaded truck and containers will standby or stop regularly;
- 2. Project Entrance near gate; from state road to gate house area and zone where

loaded truck stop at exit gate;

3. Strip of land over existing PREPA intake systems and 6 ft beyond their perimeter.

HEAVY DUTY FLEXIBLE PAVEMENT (Reinforced)								
Pavement Layer	Thickness	Minimum Requirements						
S-1 Asphalt Surface Course 2 in minimum		93%min-97%max field density per Laboratory Marshall						
B-1 Asphalt Base Course 6 inch minimur		93-97% field density per Laboratory Marshall						
Aggregate Base Course	12 in minimum	PRHTA Class A or B Aggregate Base Cours compacted to 97% modified proctor						
Biaxial Geogrid Tensar BX	1100 or Equivalent/ (6 inch of A-2-4 or A-1 @ 95% Mod. Proctor						
Subbase Course	AS REQUIRED TO ACHIEVE F.G.	Surface Compaction and Proof rolling up to a CBR of 15						

Page 36 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

4.7.6 Concrete Section:

This section is applicable where necessary in substitution of heavy-duty asphalt mostly where abrasive action, chemical effects and point loading will make use of asphalt unfeasible.

Concrete Section							
Pavement Layer	Thickness	Minimum Requirements					
Concrete Surface Course	6 in minimum	4000 psi minimum compressive strength; 10 ft x 10 ft saw cut joints; 1¼″ minimum depth					
Aggregate Base Course 12 in minin		PRHTA Class A or B Aggregate Base Course compacted to 97% modified proctor					
Subbase Course	AS REQUIRED TO ACHIEVE F.G.	Surface Compaction and Proof rolling up to a CBR of 15					

5.0 ADDITIONAL COMMENTS:

It is recommended that this submitted geotechnical report be carefully studied and evaluated to coordinate those pertinent office meetings during the project design stage, to discuss the various considered project design concepts and to clarify or include any other pertinent geotechnical design recommendations not covered in our soil report.

Note that the herein given recommendations are based on tests borings performed on spots, which are considered as representative of the subsoil conditions within the site. However, this fact does not guarantee that different conditions may be found during Page 37 of 37 – Job no. 7812 NFEnergia Development March 8, 2019

construction progress and/or excavations. In such instances, we shall be notified to proceed with a field visual inspection directed to formulate the corresponding solution.

We wish to thank you for the opportunity of submitting this geotechnical

engineering report and remain.

Respectfully submitted, JACA & SIERRA ENGINEERING, PSC

Carlos R. Sierra Del Llano, MSCE, PE

Revision D.

Enclosures

Appendix A: Boring logs and location plan

Appendix B: CPT and Downhole Seismic

Appendix C: Laboratory Test Reports

Appendix D: Pile Analysis

LIC.#18664

Appendix A

Boring Logs and Location Plan

		JACA & SIERRA		Pu FACE) а тт			7		
		Geotechnical Engineers	JUK	FACE	2 LA	FLUI		UNI		э <u>BORING N0.:</u>	SWV-1	
PRO	JECT	NFE-V-08 Puerto Rico							•	JOB 7812	SHEET OF	1
LOC	ATION	San Juan, PR			DRILL	ER/DRIL	L RIG:	Eddi	e Sev	rilla / CME-55		
	RDINAT					HOLE				СОМ	PLETED 12-14-1	7
	DESCRIPTION BY Manuel Candelario					ATION T						
	GROUNDWATER (FT) Initial: Final: DRILLING METHOD: Hollow-Stem Auger 2.25" ID					NEER M				_		
		ETHOD: Hollow-Stem Auger 2.25" ID						ν LE (π) :	100.			
Elev. (mts)	DEPTH (feet) 0.00	DESCRIPTION	LEGEND	Sample No.	BLOWS	SPT N	W	Qu	RC	RQD%	2 3 4	+LL
<u>0.00</u>	0.00	FILL: gravel with silty sand some clay, dense,		55 S-1	43 42	85	2		100		40 60 80	
-0.91	-	yellowish brown, yellow		S-2	43 18 10 12	22	5		100			
	- 5 —	CLAYEY SILT with sand, soft to medium, grayisl brown, dark gray		S-3	4 1	2	76		100			
	-			S-4	1 2 2 1	3	32	0.3	100	C	Ţ I	
-2.74	- 10	cLAYEY SILT trace sand, very soft, reddish yellow, yellowish brown		S-5	WH 1 1	2	31	0.4	100			
-4.27	 15 — 	14 SILT some clay trace sand, very soft, dark gray		S-6	WH WH WH	WH	87	0.5	100			<u> </u>
	- 20 — -			S-7	WH WH WH	WH	73	0.3	100			
	- - 25 — -			S-8	WH WH WH	WH	69	0.3	100		/ _/ _/	
-8.84	- - 30 — - -	29 CLAYEY SILT trace sand, stiff to hard, yellowiush red, white, yellow, black		S-9	4 5 6	11	32		100			
	- - 35 _			S-10	6 10	27	21	3.3	100			
"W" "Qu" "Rc" "WH	- Natural - Uncon - Core re " - Samp	of blows required to drive the sampling spoon a d Moisture Content in percentage of dry weight. fined Compressive Strength in tons per square foo ecovery in percent for each successive run. "Rqd" le was recovered by advancing the sampler with the the Unconfined Compressive Strength test indicat	t. ' - Rock ie weight	quality dea t of the har	⊊] ⊈] signation nmer.	Initial G.W Final G.W	7. Depth . Depth	30 in.				

JACA & SIERRA
Testing Laboratories Geotechnical Engineers

SUBSURFACE EXPLORATION LOG

		Geotechnical Engineers	PROJECT				ACE			ORIN	IG NUMBER: SWV-1
B	ORIN	G LOG (CONT. SHEET)		NFE-	- <u>V-(</u>)8 Puert	o Rico				7812 OF
	DEPTH (feet) 0.00	DESCRIPTION	LEGEND	Sample No.	ТҮРЕ	SMOJB	SPT N	W	Qu	RC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	40 -			S-11		4 8 10	18	37	1.6	100	
	- - 45 — -			S-12		8 10 13	23	35	2.6	100	
	- - 50 - -			S-13		9 13 17	30	36	2.1	100	
	- - 55 - -			S-14		8 10 13	23	36	1.7	100	
	60 -			S-15		6 8 13	21	37	1.4	100	
	- - 65 - - -			S-16		5 9 15	24	40	0.9	100	
	- - 70 - - -			S-17		5 9 11	20	41		100	
2.56 'N" - 'W" -	75 —	HIGHLY WEATHERED LIMESTONE with and sand, very dense, reddish yellow, yellow, of blows required to drive the sampling spoo Moisture Content in percentage of dry weig ned Compressive Strength in tons per square	, white			9 40/5" n a 140 ¥ I	40/5" Ibs hamme nitial G.W	24 er falling . Depth	30 in.	55	
"Rc" "WH	 Core rec Sample 	ned Compressive Strength in tons per squar overy in percent for each successive run. ' was recovered by advancing the sampler w he Unconfined Compressive Strength test in	"Rqd" - Rock o vith the weight	quality of the h	desig nami	gnation mer.		Depth			

Public

	1 I I			P	ubl	lic								
	Ϋ́́	JACA & SIERRA Testing Laboratories	S	SUB	SU	URF	ACE	EXI			TION			
		Geotechnical Engineers							ВС	DRIŅ	<u>G NUM</u>	BER:	<u>SW</u>	V-1
В	ORIN	G LOG (CONT. SHEET)	PROJECT	NFE-	-V-0	8 Puert	o Rico			'	JOB 78		SHEE'	Т
	DEPTH (feet) 0.00	DESCRIPTION	LEGEND	o.	ТҮРЕ	BLOWS	SPT N	W	Qu	RC	RQD%		2 3	∆ _{Qu} PL+I 3 4 0 80
				S-19		32 40/5"	40/5"	15		33			0	
	- 85 — -			S-20		12 40/5"	40/5"	15		100	-			
	90 -			S-21		31 38 29	67	13		100		 	/	
	- - 95 — -			S-22		19 29 14	43	13		100	-			
	100 -			S-23		16 18 24	42	24		100	-		0	
	- - 105 —													
	-													
	110													
	- 115 -													
"Rc"	' - Core re	of blows required to drive the sampling spo Moisture Content in percentage of dry weig fined Compressive Strength in tons per squar covery in percent for each successive run. le was recovered by advancing the sampler v the Unconfined Compressive Strength test in	"Rad" - Rock at	uality d	lesig	nation.		er falling . Depth Depth	; 30 in.					

				Pi	ubli	İC					
		JACA & SIERRA Testing Laboratories Geotechnical Engineers	SURF	AC	E 1	EXI	PLOF	RATI	ON I		
	JECT									E	BORING NO.: B-1 JOB SHEET 1
		NFE-V-08 Puerto Rico									⁷⁸¹² OF 2
	ATION	San Juan, PR					ER/DRIL				illa / CME-55
	RDINAT						HOLE				COMPLETED 1-2-18
		Mander Candenario	Final:				ATION TO				
		ETHOD: Hollow-Stem Auger 2.25" ID	- iiiai.								
										10.5	ON □W △Qu PL+LL
	DEPTH (feet) 0.00	DESCRIPTION	LEGEND	Sample No.	ТҮРЕ	BLOWS	SPT N	W	Qu	RC	RQD% 20 40 60 80
0.00 \0.13	0	0 ∖Asphalt	\times	S-1		44	74	4		100	
-0.61	_	\bigcirc 0.41 \neg FILL: gravel with sand some silt, moist, brown and		S-2		45 29	1.0	~		1.0.0	
	_	pale yellow		5-2		19 9	19	6		100	4 9
	_	FILL: silty clay some limestone fragments, moist, pale yellow, reddish brown		S-3		10 3	29	18		100	
	5 —	Do with limestone fragments, organic, moist to wet			L	6 23					
	_	wet		S-4	7	15 10	15	б		100	
	<u> </u>				Н	5					
-2.74	-	9 SILTY CLAY some and shell fragments, organic,		S-5		WH	WH	16		100	
	10 —	very soft, wet, very dark brown to black		5 5		WH WH	WII	10			
	-										
	15 — -			S-6		WH WH WH	WH	76	0.4	100	
	- 20 — -	Do with shell fragments		S-7		WH WH WH	WH	80		100	
-7.32	- 25 — -	24 SILTY CLAY, soft, wet, brown, gray		S-8		WH 3 3	6	53	0.4	100	
-8.84	 30 	29 SILTY CLAY, very stiff, moist, dark brown to brown		S-9		7 9 13	22	36	0.7	100	
"N"	- 	r of blows required to drive the sampling spoon a d	istance of	S-10 12 in. y	7	7 10 a 140 l	23	37 er falling		100	
"Qu" "Rc" "WH	' - Uncon ' - Core re I'' - Samp	r of blows required to drive the sampling spoon a d Moisture Content in percentage of dry weight. fined Compressive Strength in tons per square foot ecovery in percent for each successive run. "Rqd' ble was recovered by advancing the sampler with the the Unconfined Compressive Strength test indicat	t. ' - Rock qu le weight o	ality d	lesigi amm	F _ F nation. ner.	inal G.W.	Depth	, 50 m.		

		Geotechnical Engineers						BO	RIŅ	G NUMBER: B-1
В	ORIN	G LOG (CONT. SHEET)	PROJECT	NFE-V	V-08 Puert	o Rico			,	JOB 7812 SHEET OF
	DEPTH (feet) 0.00	DESCRIPTION	LEGEND	Sample No.	BLOWS	SPT N	W	Qu	RC	$RQD\% = \frac{\circ_{N} \Box_{W} \Delta_{Qu} PL}{\frac{\circ_{N} \Box_{W}}{1 + \frac{2}{1 + \frac{3}{1 + \frac{4}{1 + \frac{3}{1 + \frac{3}{1 + \frac{4}{1 + \frac{3}{1 + \frac{3}$
	- - - 40 - -			S-11	5 7 9	16	33	1.6	100	
3.41	- 45 - -	SILTY CLAY some sand, limestone fragmen stiff, light brown to pale yellow	44 hts,	S-12	7 8 6	14	38		77	
4.94	- - 50 - -	LIMESTONE FRAGMENTS with sand som and clay, medium,	49 ne silt	S-13	6 7 7	14	29		44	
	- - 55 — - -			S-14	9 13 10	23	19		100	
	- 60 — - -	Do loose		S-15	6 5 2	7	17		100	
	- 65 - -	Do hard		S-16	40/5"	40/5"	13		27	
	70 -			S-17	40/5"	40/5"	14		44	
'N" - 'W"	- 75 – - Number - Natural	of blows required to drive the sampling spoo Moisture Content in percentage of dry weig ined Compressive Strength in tons per squar	on a distance of	f 12 in. w	/////////////////////////////////////	lbs hamme nitial G.W	er falling 7. Depth	30 in.		

<u>8</u>		JACA & SIERRA	SURF		iblic F FV	ρι Λι) A TT			n
		Geotechnical Engineers	JUNI	AU	LLA	r lui				BORING NO.: B-2
PRO	JECT	NFE-V-08 Puerto Rico							•	JOB SHEET 1
LOC	ATION	San Juan, PR			DRIL	LER/DRII	L RIG:	Eddi	e Sev	rilla / CME-55
C00	RDINAT	ES			DATE	HOLE	START	ED 12-1	16-17	COMPLETED 12-16-17
	CRIPTIC	Mandel Candelario	-			ATION T		•		
		()	Final:			NEER M				
DRIL		ETHOD: Hollow-Stem Auger 2.25" ID		.					60.5	ON□W∆Qu PL+LL
Elev. (mts)	DEPTH (feet) 0.00	DESCRIPTION	LEGEND	Sample No.	BLOWS	SPT N	w	Qu	RC	$RQD\% \xrightarrow{\text{Qu}} 1 \xrightarrow{2} 3 \xrightarrow{4} 20 \xrightarrow{4} 60 \xrightarrow{80} 80$
0.00 +0.13	0	Asphalt		S-1	24	66	1		88	
-0.61	-	0.41 FILL: aggregate base gravel with sand, dry, brown		S-2	30 36 12	14	4		100	
	_				7					
	- 5 —	FILL: sand, medium to dense, moist, brown		S-3	12 16 16	32	14		100	
				S-4	11 12 17	29	15		100	
	- 10 — -	Do some silt, wet USCS: SP-SM AASHTO: A-3 SAND: 90% FINES: 10%		S-5	11 20 18	38	20		100	
	- 15 — -	Do with silty clay, very soft, wet		S-6	2 1 1	2	24		88	
-5.79	- 20 — -	15 CLAYEY SILT some sand some organic material, very soft, wet, dark brown USCS: ML AASHTO: A-75(16) SAND: 16.3% FINES: 10%		S-7	WH WH 1	1	69		22	
-7.32	- 25 — -	CLAY: 29.9% SILT: 53.8% LL: 47 PI: 17 24 SILTY CLAY trace sand and shell fragments,		S-8	WH WH WH	WH	69	0.2	100	
	- - 30 — -	organic, dark grayish brown to black streaks		S-9	WH WH WH	WH	37		100	
-10.37 "N"	- 	34 SILTY CLAY with sand, stiff to very stiff, r of blows required to drive the sampling spoon a d		s-10	67	16	16 er falling	4 30 in	100	
"W" "Qu' "Rc" "WH	- Natural ' - Uncon ' - Core re I'' - Samp	for blows required to drive the sampling spoon a d l Moisture Content in percentage of dry weight. fined Compressive Strength in tons per square foo ecovery in percent for each successive run. "Rqd ble was recovered by advancing the sampler with th the Unconfined Compressive Strength test indicat	t. " - Rock qu 1e weight o	ality de	⊊ ⊈ esignation ummer.	Initial G.W Final G.W 1.	V. Depth . Depth	; 50 III.		

1 I I I	
	JACA & SIERRA Testing Laboratories
	Geotechnical Engineers
	0

SUBSURFACE EXPLORATION LOG

		Geotechnical Engineers						BC	ORIN	G NUMBER: B-2 JOB 7812 SHEET 2
B	ORIN	G LOG (CONT. SHEET)	PROJECT	NFF-	V-08 Pu	erto Rico			•	JOB 7812 SHEET 2 OF 2
	DEPTH (feet) 0.00	DESCRIPTION	LEGEND		BLOWS		w	Qu	RC	$\begin{array}{c c} \circ_{\rm N} & \Box_{\rm W} & \Delta_{\rm Qu} & {\rm PL+LL} \\ \hline \\ RQD\% & \begin{array}{c} Qu & 1 & 2 & 3 & 4 \\ \hline & & & & & \\ \end{array}$
	-	yellowish brown and gray		5.11	9 7 9	22	31	2.3	100	N-W 20 40 60 80
	40	USCS: CH AASHTO: A-7-6 (43) SAND: 8%		S-12	13	31	28	4.4	100	
<u>-14.94</u>	- - - 50 - -	SILT: 47.3% CLAY: 50.9% LL: 64 PI: 38 SILTY CLAY, very stiff, yellowish brown a gray, streaks, moist	49 and	S-13	9 11 15	26	31	2.9	100	
	- - 55 — -			S-14	9 14 17	31	34	2.9	88	
	60 -	Do reddish brown some sand		S-15	10 16 15	31	24	1.1	100	
	- - 65 — -									
	- - 70 — - -									
	- 75 —									
"W" "Qu "Rc'	- Number - Natural '' - Uncont ' - Core re	of blows required to drive the sampling spo Moisture Content in percentage of dry wei fined Compressive Strength in tons per squa covery in percent for each successive run. le was recovered by advancing the sampler the Unconfined Compressive Strength test if	ght. ire foot. "Rqd" - Rock q	uality d	₩ Esignati	Initial G.V Final G.W on.	V. Depth 7. Depth	g 30 in.	1	

Public

				Р	ub	lic							
		JACA & SIERRA Testing Laboratories Geotechnical Engineers	SURF	AC	E	EXI	PLOF	RATI	ON I				
	ПОТ	Geoteennear engineers								E	BORING NO.:	B-3	1
PRO	JECT	NFE-V-08 Puerto Rico								`	JOB 7812	SHEET OF	1
	ATION	San Juan, PR					ER/DRIL				illa / CME-55	•	
	RDINAT						HOLE				COMP	.ETED 12	2-16-17
		Manuel Canaciano	Final						-	-			
		TER (FT) Initial: 7.5 ETHOD: Hollow-Stem Auger 2.25" ID	Final:				IEER M						
		ETHOD: Hollow-Stem Auger 2.25" ID	,							00.5		W ∆ Qu	PL+LL
	DEPTH (feet)	DESCRIPTION	EGEND	Sample No.	ЧРЕ	BLOWS	SPT N	w	Qu	RC	RQD%	2 3	4
(1113)	0.00		LE(Sam	Π	ВГ		vv	Qu	RC	20	40 60	80
0.00 +0.13	0	Asphalt		S-1		44	27	1		100			
-0.61	-	0.4 FILL: aggregate base gravel with sand, dry, brow		S-2		18 9	19	8		100			
	_	gray	$_{2}$	~ -		10 10 9					7		
	-	FILL: sand occurring shell fragments, medium to loose, moist, brown		S-3		4 6	12	4		100			
	5 —			a 4	Н	б	_	0.0		100			
				S-4		3 3 2	5	26		100	q q		
	<u> </u>					2							
	-	Do very loose		S-5		WH WH	2	26		100			
	10 —				Н	2							
	-												
	_												
	_			S-6		wн	WH	25		100			
	15 —				Ц	1 WH							
	-												
	_												
				S-7		6	4	19		100			
	20 —				Д	3 1							
	_												
	_												
	_			S-8		3	7	24		55			
	25 —				Д	3 4							
	_												
	-												
-8.84	-	2 SAND with shell fragments and silty clay, loose,	<u> 9 XXX </u>	S-9		1	5	29		55			
	30 —	dark gray				3 2		29					
	_												
	-										$ \rangle'$		
-10.37	-	3 SAND trace silt, medium to dense, brown	4	S-10		7	25	19		100			
"N!"	35 _	of blows required to drive the sampling spoon a	distance of			10		_	30 in		μò		
"W"	- Natural	Moisture Content in percentage of dry weight. fined Compressive Strength in tons per square for		1 Z III.	witt.	⊥ ⊒ I	nitial G.W	/. Depth	50 m.				
"Rc"	- Core re	ecovery in percent for each successive run. "Rquile was recovered by advancing the sampler with the	i" - Rock qu			gnation.		. Deptii					
		the Unconfined Compressive Strength test indica					etrometer.						

	<u>L</u> L	JACA & SIERRA Testing Laboratories										
~~~		Geotechnical Engineers		SUB	<b>S</b> J	URF	ACE	EXI			TION LOG	
		producer in Engineers	PROJECT						BC	DRIN	G NUMBER: B	-3 HEET
BO	RIN	G LOG (CONT. SHEET)	PROJECT	NFE	- <u>V-0</u>	8 Puert	o Rico				7812	HEET DF
Elev.DE (mts) (f		DESCRIPTION	LEGEND	Sample No.	ТҮРЕ	BLOWS	SPT N	w	Qu	RC	$RQD\% = \frac{\circ_{N} \Box_{W}}{\bigvee_{N=1}^{Q_{U}} 1 - 2}$	3 4
	40 -	LL: 52 PI: 33		S-11		15 17 28 21	49	17		100		
<u>-13.41</u>	- - 45 - -	SILTY CLAY some sand, very stiff, moist, r brown	44 reddish	s-12	ľ	11 11 15	26	29		100		
	- - 50 — -			S-13	ľ	7 9 12	21	30	1.5	100		
	- - 55 — -	Do some sand, wet SAND: 19% FINES: 81.0%		S-14		7 9 15	24	34	2.4	100		۱ <u>ک</u>
-17.99	- - - 60 - -	SAND with silty clay, medium reddish brow	59 'n : :	S-15	Ĩ	2 5 6	11	21		100		
	- - 65 — - -											
	- - 70 - -											
	- 75 —	of blows required to drive the sampling spoo Moisture Content in percentage of dry weig ined Compressive Strength in tons per squar										

345		JACA & SIERRA			ub									
		Geotechnical Engineers	SURF	AC	E	EXI	PLOR	ATI	ON I				D 1	
PRO	JECT									E	IOR	G N0.:	B-4 SHEET	· 1
	ATION	NFE-V-08 Puerto Rico					ER/DRIL		<b>E</b> 441			312	OF	2
		San Juan, PR			I		HOLE				illa / CN		LETED	12-15-17
	CRIPTIC						TION TO							
GRO			Final:			ENGIN	EER M	anuel (	Candela	ario				
DRIL	LING M	ETHOD: Hollow-Stem Auger 2.25" ID				ΤΟΤΑΙ	DEPTH	OF HO	DLE (ft):	60.5	-			
	DEPTH (feet) 0.00	DESCRIPTION	LEGEND	Sample No.	ТҮРЕ	BLOWS	SPT N	W	Qu	RC	RQD%	Qu N-W 1	] W ∆ Q 2 3	4
0.00 +0.13	0.00	∩Asphalt 0	××××	s-1		68	94	4		100		20	40 60	80
<u>-0.61</u>		0.41 FILL: silty clay some sand and gravel, moist, grayish brown to brown		S-2		58 36 23 40	72	6		100		Р ф		0
	- 5 —	FILL: sand, very loose to loose, moist, brown		S-3		32 14 26 22	48	3		100				/
	-			S-4			40/3"	5		0.05		Ę	þ	
	- - ¥10 -			S-5	ľ	6 7 6	13	17		88				
	- - 15 — -			S-6		WH 2 4	6	26		83				
	- 20 — -			S-7		4 4 5	9	25		100				
-7.32	- 25 — -	24 SAND with coral and shell fragments some silty clay, very loose to loose, wet, dark gray		S-8		2 4 4	8	31		66			]	
	- - 30 — -			S-9		2 3 4	7	31		100			]	
	- - 35 _			S-10	7	5 1	4	30		100				
"Qu' "Rc" "WH	" - Uncon ' - Core re H" - Samp	r of blows required to drive the sampling spoon a d l Moisture Content in percentage of dry weight. fined Compressive Strength in tons per square foot ecovery in percent for each successive run. "Rqd" ble was recovered by advancing the sampler with th the Unconfined Compressive Strength test indicate	' - Rock qu e weight o	ality of the h	desig nami	➡ F gnation. mer.	inal G.W.	r falling . Depth Depth	30 in.					

	L. d. d.			P	ubl	lic							
		JACA & SIERRA Testing Laboratories Geotechnical Engineers		SUB	BSU	URF	<b>FACE</b>	EXI			TION LOO		
В	ORIN	IG LOG (CONT. SHEET)	PROJECT	NFE	-V-0	8 Puert	o Rico				JOB 7812	SHEET OF	2
Elev. (mts)	DEPTH (feet) 0.00	DESCRIPTION	LEGEND	: . Sample No.	ТҮРЕ	BLOWS	SPT N	W	Qu	RC	RQD% Qu 1 N-W 20	$\square_{W} \Delta_{Qu}$ $2 3$	
<u>-11.89</u>	- - 40 — -	SILTY CLAY some sand, medium, yellowis brown, moist	39	s-11		6 5 5	10	40		55			
	- 45 — -	Do some limestone fragments		S-12		5 10 7	17	31		61	0		
	- - 50 —			S-13		13 7 13	20	44		55			
	- - 55 — -	Do with limestone fragments		S-14		12 12 14	26	33		50	c		
	60 -			S-15	⁵	32 38 11	49	38		77			
	- - 65 — -												
	- 70 — - -												
	75 —												
"Rc"	- Core re	of blows required to drive the sampling spo Moisture Content in percentage of dry weig fined Compressive Strength in tons per squa covery in percent for each successive run.	"Rqd" - Rock q	uality of	desig	gnation.	nitial G.W	/. Depth . Depth	50 m.				

"WH" - Sample was recovered by advancing the sampler with the weight of the hammer. "P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.

8		JACA & SIERRA Testing Laboratories SUBS	SURI		'ub 'F		DI UI	раті	ON I		r
-		Geotechnical Engineers	JUNI								BORING NO.: C-1
PRO	JECT	NFE-V-08 Puerto Rico								•	JOB 7812 SHEET 1 OF 4
LOC	ATION	San Juan, PR				DRILL	ER/DRIL	L RIG:	Eddi	e Sev	illa / CME-55
coo	RDINAT	ES				DATE	HOLE	START	<b>ED</b> 1-19	9-18	COMPLETED 1-19-18
	CRIPTIC	Wander Canachario					ATION T				
		. , 5	Final:				NEER M				-
		ETHOD: Hollow-Stem Auger 2.25" ID				IUIA	L DEPTH		ν <b>με (π):</b>	120.	
	DEPTH (feet) 0.00	DESCRIPTION	LEGEND	Sample No.	ТҮРЕ	BLOWS	SPT N	W	Qu	RC	$RQD\% \xrightarrow{\text{O N}} 1 \xrightarrow{\text{Qu}} 3 \xrightarrow{\text{Qu}} 40 \xrightarrow{\text{CO N}} 3 \xrightarrow{\text{Qu}} 3 $
<u>0.00</u>	0	0 FILL: sandy silt with gravel, brown, yellowish		s-1	7	20 31	43	4		95	
-0.61	-	brown Hydraulic FILL: sand some silt, medium dense to		S-2		12 12 8	15	31		100	
	- ¥ 5 -	loose, moist, brown		S-3		7 6 7 5	12	19		100	
	-			S-4		2 2 3	5	24		100	
	10 -			S-5		4 2 2	4	23		100	
	- - 15 -	Do loose to very loose		S-6		1 1 1	2	26		100	
-5.79	- 20 — -	19 CLAYEY SILT, soft, dark gray		× × s-7		2 1 1	2	67	0.4	100	
	- 25 — -	Do ocurring pockets or thin layers of sand		S-8		3 4 2	6	27		100	
-8.84	- - 30 — -	29 SANDY SILT with some clay, loose, gray		S-9		WH 2 4	6	24		98	
-10.37	35_	34 CLAYEY SAND, medium dense to dense,		s-10		8	20	19	1.3	95	
"W" "Qu" "Rc" "WH	- Natural ' - Uncon ' - Core re I'' - Samp	of blows required to drive the sampling spoon a d Moisture Content in percentage of dry weight. fined Compressive Strength in tons per square foot covery in percent for each successive run. "Rqd" le was recovered by advancing the sampler with th the Unconfined Compressive Strength test indicate	t. ' - Rock o e weight	quality of the l	desig hami	$\stackrel{\underline{\Psi}}{=} I$ $\stackrel{\underline{\Psi}}{=} F$ gnation. mer.	nitial G.W ⁷ inal G.W	7. Depth . Depth	30 in.		

	ЦЦД.	JACA & SIERRA Testing Laboratories	9	SUR	SU	RF	ACE	EXI	PLOI	RAT	TION LOG
		Geotechnical Engineers	L.								G NUMBER: C-1
В	ORIN	IG LOG (CONT. SHEET)	PROJECT	NFE-	V-08	Puerto	Rico			•	JOB 7812 SHEET OF
	DEPTH (feet) 0.00	DESCRIPTION	LEGEND	o.		BLOWS	SPT N	W	Qu	RC	$RQD\%^{Qu} \xrightarrow{PL}{N-W} \xrightarrow{Q_{U}} W \xrightarrow{Q_{U}} Q_{U} \xrightarrow{PL}{1}$
	-	yellowish red and white, silica sand				11					N-W 20 40 60 80
	40			S-11		6 10 12	22	19		90	
3.41	- 45 — -	SILTY CLAY some sand, very stiff to hard, yellowish red, white mottled	44	S-12		7 12 17	29	29	2.6	95	
	- 50 — -			S-13		6 8 13	21	26	0.7	88	
.46	- - 55 — -	SILTY CLAY trace sand, very stiff to hard, brownish red	54	S-14		9 11 18	29	36	4.7	88	
	- 60 — -			S-15		7 9 13	22	37	3.8	90	
	- - 65 — -			S-16		7 10 13	23	42	1.0	100	
	- - 70 — - -			S-17		4 6 9	15	38	0.8	98	
	- - 75 —	of blows required to drive the sampling spo Moisture Content in percentage of dry weig fined Compressive Strength in tons per squa		S-18		5 9	21	41	1.2	94	

	444			Ρ	ub	lic						
		JACA & SIERRA Testing Laboratories Geotechnical Engineers		SUB	SI	URF	ACE	EXI			TION LOG	
		III	PROJECT						BC	DRIN	G NUMBER: C-1	3
B		G LOG (CONT. SHEET)		NFE-	<u>V-(</u>	)8 Puert	o Rico	1	1	Ľ	7812 OF	4
Elev. (mts)	DEPTH (feet) 0.00	DESCRIPTION	LEGEND	Sample No.	ТҮРЕ	BLOWS	SPT N	w	Qu	RC	$\begin{array}{c} \circ_{N} \Box_{W} & \Delta_{Q} \\ RQD\% & \begin{array}{c} Qu & 1 & 2 & 3 \\ \hline N-W & 20 & 40 & 60 \end{array}$	u PL+LL 4 80
				S-19	Z	12 3 4 5	9	44	0.5	100		
-25.61	- 85 — -	LIMESTONE GRAVEL with clay and sand yellowish white, light yellow (very weak po limestone or limestone collovium)	84 pus	s-20	Z	15 8 15	23	15		65		
	- - 90 — -				Z	18 8 9	17	16		70		
	- - 95 — -					41 28 18	46	13		88		
	- - 100 — -				Z	15 7 5	12	14		90		
<u>-31.71</u>		CLAYEY SILT with limestone fragments, so yellowish brown	104	5-24	Z	4 WH 2	2	47		100		
				S-25		WH 1 2	3	53		100		
		Do limestone gravel with clayey silt		S-26		7 14 17	31	20		100		
"Rc" "WH	' - Core re I" - Samp	of blows required to drive the sampling spoo Moisture Content in percentage of dry weigh fined Compressive Strength in tons per square ecovery in percent for each successive run. " le was recovered by advancing the sampler w the Unconfined Compressive Strength test in	Rqd" - Rock of the the weight	quality of the h	lesi ami	gnation. mer.			30 in.			

	4 4 4			F	Pub	olic					
	ЙЙ	JACA & SIERRA Testing Laboratories		SU	BS	URF	ACE	EXI	PLOI	RAT	TION LOG
		Geotechnical Engineers									g NUMBER: C-1
В		G LOG (CONT. SHEET)	PROJEC								JOB SHEET 4
						08 Puert	o Rico				<b>OF</b> 4
	DEPTH (feet)	DESCRIPTION		Sample No.	TYPE .	BLOWS	SPT N	W	Qu	RC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0.00			່ ເ							N-W 20 40 60 80
-36.28	-	WEAK POROUS LIMESTONE sampled as and silt	119 s gravel	S-2	7	15 8	40/5"	17		100	
	120	and silt		<u>+</u>		<u>40/5"</u>					
	- 125 — - -										
	- 130 — -										
	- 135										
	- 140 — -										
	- 145 — - -										
	- 150 - -										
	- 155 —										
"Rc"    "WH	155 -         'N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.         'W" - Natural Moisture Content in percentage of dry weight.         'Qu" - Unconfined Compressive Strength in tons per square foot.         'E         'Rc" - Core recovery in percent for each successive run.         'Rd" - Rock quality designation.         'WH" - Sample was recovered by advancing the sampler with the weight of the hammer.         'P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.										

Public JACA & SIERRA Testing Laboratories SUBSURFACE EXPLORATION LOG														
		Geotechnical Engineers	OKF	ACI	ΕE	ιXΥ	LUF	KA I I	UN I		BORING NO.: C-2			
PRO	JECT	NFE-V-08 Puerto Rico								<u> </u>	JOB SHEET 1			
LOC	ATION	San Juan, PR			DF	RILLE	R/DRIL	L RIG:	Eddi	e Sev	/812 OF 4 illa / CME-55			
11	RDINA				DA	DATE HOLE         STARTED         12-19-17         COMPLETED         12-19-17								
	CRIPTIC	Manuel Candelario		ELEVATION TOP OF HOLE (mts):										
GROUNDWATER (FT)Initial: 6Final:DRILLING METHOD:Hollow-Stem Auger 2.25" ID						ENGINEER Manuel Candelario TOTAL DEPTH OF HOLE (ft): 120.5								
DRIL		ETHOD: Hollow-Stem Auger 2.25" ID	<u> </u>				DEPTE			120.				
	DEPTH (feet)	DESCRIPTION	LEGEND	Sample No.	TYPE	BLOWS	SPT N	W	Qu	RC	$RQD\% \xrightarrow[]{N-W} 1 \xrightarrow{2} 3 \xrightarrow{4} 1 \xrightarrow{2} 3 \xrightarrow{4} 1 \xrightarrow{2} 3 \xrightarrow{4} 1 \xrightarrow{2} 3 \xrightarrow{4} 3 \xrightarrow{4} 3 \xrightarrow{1} 3$			
0.00 \0.15	0	∩ Asphalt		s-1		53	22	1		77				
-0.61	-	0.50 FILL: aggregate base gravel with sand, dry, brown		S-2	L 1	11 11								
	-	gray 2		5-2		11 9 11	20	9		100				
	-	FILL: sand, medium to very loose, moist, brown		S-3		6	10	9		100				
	5 -				4	5 5								
	<u>₹</u> -	Do gray to brown wet, very loose to loose		S-4		3 3	6	27		100				
	-					3								
	-			S-5		1	4	23		100				
	10 -			-		2 2								
	-													
	-													
	-			S-6		2	WH	25	77					
	15 —			~ -	V	WH WH	VV11	25			│			
	-													
	-													
	_			s-7		1	1	27		77				
	20 -			5-7	V	ин 1	Т	27						
	-					-								
	-													
	-						_							
	25 -			S-8		1 2 4	6	20		100	Q 4			
	-					4								
	-													
-8.84	-	29												
	30 -	SILTY CLAY some sand, trace organics, medium, moist, very dark brown to black	1M	S-9		5 5	10	47		100				
	-			-		5								
	-													
-10.37	-	34									$    \setminus /$			
-10.57	35 _	SILTY CLAY trace sand, stiff to hard, reddish		S-10		10	36	33		100				
	- Numbe	r of blows required to drive the sampling spoon a di Moisture Content in percentage of dry weight.	istance of 1	2 in. v	vith a	140 lb	s hamm tial G.W	er falling	30 in.					
"Qu'	" - Uncon	fined Compressive Strength in tons per square foot ecovery in percent for each successive run. "Rqd"	- Rock and	ality d		- Fii	nal G.W							
WH "WH	I" - Samp	le was recovered by advancing the sampler with th	e weight of	the ha	ammei	r.	romotor							
"P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.														

		JACA & SIERRA					olic					
		Geotechnical Engineers			SUB	S	URF	ACE	EXI			FION LOG ig number: C-2
В		G LOG (CONT. SHEET)	PRO	JECT	NEE			D.		B		JOB SHEET
Elev.	DEPTH (feet)	DESCRIPTION	<u> </u>	LEGEND		TYPE 1-4	08 Puert SMOTB	SPT	W	Qu	RC	$\begin{array}{c c} & \mathbf{OF} \\ & & \mathbf{O}_{N} & \Box_{W} & \Delta_{Qu} & PL+ \\ \hline & & \mathbf{RQD\%}^{Qu} & 1 & 2 & 3 & 4 \\ \end{array}$
	0.00	brown, gray streaks		Ë	Sam		<b>n</b> 21					N-W 20 40 60 80
	40 -				S-11	Z	6 10 12	22	30	2.1	100	
	- - 45 -				S-12		4 6 10	16	22	1.7	100	
	- 50 — -				S-13	Z	5 5 10	15	12	1.3	100	
	- - 55 — - -	Do some sand			S-14	Z	8 8 10	18	16		77	
7.99	- 60 - -	SAND trace fines, medium, yellowish brown	59		S-15	Z	5 8 12	20	29		77	
9.51	- - 65 - - -	SILTY CLAY some sand, limestone fragmer stiff, light brown to pale yellow	64 nts,		S-16	Z	15 14 14	28	18		100	
1.04	70	HEAVILY WEATHERED LIMESTONE FRAGMENTS with sand some silt and clay, medium,	69		S-17		14 14 40/1"	40/1"	11		66	
1	75 -				-			40/5"	12	20:	27	
"Rc" "WH	- Core re	of blows required to drive the sampling spoo Moisture Content in percentage of dry weig fined Compressive Strength in tons per squar covery in percent for each successive run. le was recovered by advancing the sampler w the Unconfined Compressive Strength test in	"Rqd" · vith the	- Rock c weight	uality d of the h	lesi am	gnation.		7. Depth Depth	, 30 in.		

$\begin{array}{c c} lev. DEPTH \\ mts) (feet) \\ accord \\ accord \\ cord	T T T			Pı	ublic				
BORING LOG (CONT. SHEET)         PROJECT         NULL VISP Puerto Rico         JOB         7812         SHEET           iev DEPTT         DESCRIPTION         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g		Testing Laboratories	S	SUB	SURI	FACE	EXI		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BORING L	OG (CONT. SHEET)	PROJECT	NFF-	V-08 Puer	to Rico		Derti	JOB SHEET
$ \begin{array}{c}             80 \\             80 \\           $	nts) (feet)	DESCRIPTION	LEGEND			SPT	W	Qu RC	$\begin{array}{c c} O_{\rm N} & \Box_{\rm W} & \Delta_{\rm Qu} & {\rm PL}_{\rm H} \\ \hline RQD\% & \begin{array}{c} Q_{\rm u} & 1 & 2 & 3 & 4 \\ \hline & & & & & & \\ \hline & & & & & & & \\ \hline \end{array}$
$85 - \frac{1}{100} =	80 -			S-19	40/2"	40/2"	8	13	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85 —			S-20	34 40/4"	40/4"	13	66	
$\begin{array}{c} 95 \\ 100 \\ 100 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ $	90 -			S-21	40/4"	40/4"	13	16	
$\begin{bmatrix} 100 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	95 -			S-22	23	35	19	10	
$105 - 28 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 16 \\ 77 \\ 16 \\ 77 \\ 16 \\ 77 \\ 16 \\ 77 \\ 10 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	100 -			S-23	16	36	15	18	
				S-24	28	45	15	100	
	110 -			S-25	7	17	16	77	
115       Image: S-26       37       43       23       72         115       Image: S-26       37       22       21       10         N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.       Image: S-26       10       10         VW" - Natural Moisture Content in percentage of dry weight.       Image: S-26		ows required to drive the sampling spo	on a distance of		22 21				

			Ρι	iblic											
	JACA & SIERRA Testing Laboratories Geotechnical Engineers	S	SUB	SURF	ACE	EXI				LOG					
	Geotechnical Engineers						BC	DRIN		<u>IBER: C-2</u>	2				
BOR	NG LOG (CONT. SHEET)	PROJECT	NFE-V	/-08 Puert	o Rico			•	JOB 7	812 SH	EET 4				
Elev.DEPT (mts) (feet		LEGEND	Sample No.	BLOWS	SPT N	W	Qu	RC	RQD%	O _N □ _W Qu _{1 2}	Δ _{Qu} PL+LL 3 4				
120			<b>Ö</b> S-27	10 10 6	16			100		N-W 20 40	60 80				
125															
130															
135															
140	-														
145	-														
150															
155	-														
"Rc" - Core	H ber of blows required to drive the sampling sporal Moisture Content in percentage of dry wei onfined Compressive Strength in tons per squa recovery in percent for each successive run. nple was recovered by advancing the sampler in the Unconfined Compressive Strength test	"Rad" - Rock a	ualitv de	esignation.			30 in.	1	I	<u> </u>					

	┟╷┟╷┟			Ρι	iblic										
	UUU ÂR	JACA & SIERRA Testing Laboratories Geotechnical Engineers	SUBSURF	'AC	E EX	PLOF	RATI	ION I							
		Geotechnical Engineers							E	BORIN	<u>G No.:</u>	<u>1-I</u>	<u> </u>		
PROJE	ECT: N	FE V-08 Microfuel Handling	g Facilites						•	JOB: 78	312-P	OF	EET	1	
LOCA		Cataño, PR				LER/DRIL					ME-55				
						STARTE				DATE CO	OMPLET	<b>ED:</b> 12	2-10-1	18	
	RIPTION	Curlos R. Dienta Del Ela	no Final: 6			ACE ELI		. ,		Llama					
									a Dei	Liano					
DRILL		<b>HOD:</b> Hollow-Stelli Auger 2.									O N	<b>–</b> w	Δ Qu		
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO	BLOWS	SPT N	w	Qu	RC	RQD%		2	3	4	
<u>7.00</u>	0		0	0) S-1	88	77	2		91		N-W 20	40	60	80	
		FILL: sand and gravel, asphalt paveme			56 21							- /	/	-	
5.00		FILL: sand with limestone fragments		S-2	15 18 15	33	17		83			9	-		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
1.00	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
-2.00															
	- 12 -												•		
	- 16 -											-			
												-	-		
	- 20 -											-	•		
	- 24 -											-	-		
												-	•		
"Rc" - "WH"	Core reco - Sample	f blows required to drive the sampling s Moisture Content in percentage of dry w and Compressive Strength in tons per so overy in percent for each successive run was recovered by advancing the sample the Unconfined Compressive Strength te	. "RQD" - Rock er with the weight	quality of the ha	lesignatio mmer.	n.		g 30 in.							

				Ρι	iblic										
		JACA & SIERRA Testing Laboratories Geotechnical Engineers	SURF	ACI	E EX	PLOF	RATI	ION I				<b>A</b> D			
PROJE	ECT:								E	BORIN	G No.:	2-₽ ∣shee	<b>T</b> 1		
	N	FE V-08 Microfuel Handling Facil	ites							JOB: 78		OF	1		
	TION:	Cataño, PR				LER/DRIL E STARTE				illa / C	ME-55 DMPLETE	<b>-</b> 12_1	1-18		
						FACE ELL						<b>D</b> . 12-1	1-10		
	NDWATI	Curros R. Sterra Der Elano	Final: 7			NEER: (				Llano					
DRILLI	ING MET	<b>THOD:</b> Hollow-Stem Auger 2.25" ID			тоти	AL DEPTH	<b>- (ft)</b> : 1	0.5							
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO.	BLOWS	SPT N	w	Qu	RC	RQD%	Qu 1	□ w △ ( 2 3			
¥5.00	0.00	C		ഗ് S-1	42	63	5		88		^{N-W} 20 ∀	40 6	<u>) 80</u>		
		FILL: sand and gravel, asphalt pavements			32 31							/			
3.00		FILL: sand with limestone fragments		S-2	25 11 7	18	4		73		¢ ¢		-		
0.00	SAND trace silt, loose, wet, yellowish brown SAND trace silt, loose, wet, yellowish brown S-4 2 3 24 91														
	SAND trace silt, loose, wet, yellowish brown $S-4$ $S$														
	$ \begin{array}{c} \blacksquare \\ \blacksquare $														
					22										
	- 12 -														
	- 16 -														
	- 20 -														
	- 24 -														
"Rc" - "WH"	Core reco - Sample	f blows required to drive the sampling spoon a d Moisture Content in percentage of dry weight. The Compressive Strength in tons per square foo overy in percent for each successive run. "RQE was recovered by advancing the sampler with the <u>Unconfined Compressive Strength test indicat</u>	0" - Rock of the weight of the weight of the second s	quality of the ha	lesignatio mmer.	on.		g 30 in.							

관원		JACA & SIERRA	CUDE		ubl						r
		Geotechnical Engineers	SURF	AC	Ľ.	EAI	LOF				BORING No.: 3-P
PROJE	ECT: N	FE V-08 Microfuel Handling Faci	lites							•	JOB: 7812-P SHEET 1 OF 1
LOCA	TION:	Cataño, PR					ER/DRIL				illa / CME-55
	DINATE						STARTE				<b>DATE COMPLETED:</b> 12-11-18
		Curros IX Sterra Del Elano	Final: 5							-	<b>X</b> 1
			Final: 5.	5			IEER: ( DEPTH			a Del	Llano
DRILL	ING MET	<b>THOD:</b> Hollow-Stem Auger 2.25" ID	)						0.5		ΟΝ ΟΨ ΔQu
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO.	ТҮРЕ	BLOWS	SPT N	W	Qu	RC	RQD% Qu 1 2 3 4
<u>8.00</u>	0	FILL: sand and gravel, asphalt pavements		S-1		24 14 15	29	9		75	
6.00		SAND some silt, loose, wet, gray, brown		S-2		11 13 13	26	6		93	
	- 4 -			S-3		6 5 4	9	7		89	
	- 	Do very loose		S-4		2 WH 1	1	25		73	
	- 8 -	Do brown, wet		S-5	7	2 2 2	4	31		97	
"N" - 1	- 12 -	f blows required to drive the sampling spoon a	distance of	12 in 1	with	a 140 l	bs hamm	er falling	30 in.		
"Rc" - "WH"	Core reco - Sample	f blows required to drive the sampling spoon a Moisture Content in percentage of dry weight. The Compressive Strength in tons per square for overy in percent for each successive run. "RQ was recovered by advancing the sampler with the Unconfined Compressive Strength test indica	D" - Rock of the weight of the meight of the back of t	quality of the h	desi namn	ignation ner.	l <b>.</b>	7. Depth Depth			

				Pu	blic										
		JACA & SIERRA Testing Laboratories Geotechnical Engineers	SURF	ACI	E EXI	PLOF	RATI	ION I					-		
PROJE		ma							E		G No.:	<b>4-</b>	P EET	1	
	N	FE V-08 Microfuel Handling Fac	ilites						`	<b>ЈОВ:</b> 78	812-P	OF		1	
LOCAT		Cataño, PR				ER/DRIL					ME-55				
						STARTE				DATE CO	OMPLET	ED: 1	2-11-1	.8	
	NDWAT	Curros IN Sterra Der Ehano	Final: 8					N (ft): 8	-	Llano					
	NG MET														
		100. 110110W-Stelli Auger 2.25 11		o.							O N	□ w	Δ Qu		
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO.	BLOWS	SPT N	w	Qu	RC	RQD%	-	2	3	4	
8.00	0		• 🗙	ഗ ട-1	18	48	5		98		N-W 20	<u>40</u>	60	80	
		FILL: sand and gravel, asphalt pavements			19 29							/	-	-	
6.00		SAND some silt, loose, wet, gray, brown	2	S-2	13 15 15	30	8		93		<del> </del>	¢ '	-	-	
	- 4 -			S-3	6 12 13	25	12		97						
		Do wet		S-4	11 13 9	22	13		88		Ц Ц Ц Ц Ц	-	-	-	
-1.00	<b>¥</b> 8 -	SAND trace silt loose gray	9	S-5	3	6	30		83					-	
	- 12 -											-			
	- 16 -											-			
												-		-	
	- 20 -											-		-	
	- 24 -											-		-	
												-		-	
"Rc" - "WH"	Core reco - Sample	f blows required to drive the sampling spoon a Moisture Content in percentage of dry weight. ned Compressive Strength in tons per square for overy in percent for each successive run. "RC was recovered by advancing the sampler with the Unconfined Compressive Strength test indic	D" - Rock of the weight of	quality d	lesignation mmer.	n.		g 30 in.	<u> </u>	I	I				

12145		JACA & SIERRA			iplic										
		Geotechnical Engineers	SURF	'AC	E E	XPLO	RAT]	ION I				5 1	D		
PROJE	CT:								E	BORIN JOB: 78	<u>G No.:</u>	<b>כ_</b>  SH	L IEET	1	
LOCAT		FE V-08 Microfuel Handling Facili Cataño, PR	ites		DF	ILLER/DR	ILL RIG:	Eddi		/8 rilla / C		OF		1	
	DINATES	•				TE STAR					OMPLET	<b>ED:</b> 1	2-11-1	8	
DESCF	RIPTION	BY: Carlos R. Sierra Del Llano			su	RFACE EI	EVATIO	N (ft): 8	8						
GROU	NDWATI	ER (ft): Initial: 10 F	inal: 8			GINEER:			a Del	Llano					
DRILLI	NG MET	<b>THOD:</b> Hollow-Stem Auger 2.25" ID			ТС	TAL DEPT	「H (ft): ]	10.5	1	1					
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO.		SPT N	w	Qu	RC	RQD%		□ w 2 40	∆ Qu 3 60	4	
8.00	0	0 FILL: sandy gravel with traces silt, gray, brown		S-1	2	6 41 2 9	7		77			-40			
6.00		SAND trace silt, dense to medium dense, brown		S-2	2	4 37 1 6	9		91			 		-	
	- 4 -			S-3		9 30 1 9 30	10		87		р-ф   /	¢			
	$\blacksquare B = \begin{bmatrix} D_{0 \text{ wet}} \\ \blacksquare \\$														
-1.00															
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
	- 12 -												-		
	- 16 -											-	-		
														-	
	- 20 -											•	-		
	- 24 -														
"Rc" - "WH"	Core reco - Sample	f blows required to drive the sampling spoon a di Moisture Content in percentage of dry weight. The Compressive Strength in tons per square foot overy in percent for each successive run. "RQD was recovered by advancing the sampler with the <u>e Unconfined Compressive Strength test indicate</u>	" - Rock o e weight o	quality of the ha	design: ammer	ation.		g 30 in.							

0.150		JACA & SIERRA			blic										
		Testing Laboratories SUB	SURF	ACI	EEX	PLOF	RATI	[ <b>ON</b> ]				ζ Τ	•		
PROJE	ECT:								E	BORIN	G No.:	6-1	) EET	1	
	N	FE V-08 Microfuel Handling Faci	lites							JOB: 78		OF		1	
	TION:	Cataño, PR				LER/DRIL				illa / C	ME-55 DMPLETE	<b>.</b> 1/	7 11 1	0	
						ACE ELE					JINIFLEIC	<b>D</b> : 1.	2-11-1	0	
	NDWAT	Curros IX Sierra Der Elano	Final: 8			NEER: (			-	Llano					
DRILL	ING MET					L DEPTH									
				ö							O N [	JW.	∆ Qu		
ELEV (ft)	DEPTH (ft)	DESCRIPTION	LEGEND	SAMPLE NO	BLOWS	SPT N	w	Qu	RC	RQD%	Qu 1	2	3	4	
20.00	0.00										^{N-W} 20	40	60	80	
8.00	0	FILL: gravelly sand lense, brown, gray		S-1	24 21 23	44	5		89			 	-	-	
6.00		SAND trace silt, dense, brown, gray	2 ////////////////////////////////////	S-2	21 22 23	45	4		91		中 1	9 1	-	-	
	- 4 -			S-3	14 18 18	36	6		94		-¢		-		
	$\blacksquare Do \text{ some silt, wet} \qquad														
-1.00	$\underbrace{}_{00}$ SAND trace organic matter, loose, light gray $S-5$ $3$ $7$ $26$ $86$ $3$ $7$ $26$														
	- 12 -											-	-		
														-	
	- 16 -											-	-	-	
												-	-		
	- 20 -											-	-		
	- 24 -											-		-	
"NI" N	Jumber of	f blows required to drive the compling space of	distance of	12 in	ith a 140	lbs hamm	er falling	1 30 in				-	•		
"Rc" - "WH"	Core reco - Sample	f blows required to drive the sampling spoon a Moisture Content in percentage of dry weight. The Compressive Strength in tons per square for overy in percent for each successive run. "RQI was recovered by advancing the sampler with the Unconfined Compressive Strength test indica	D" - Rock of he weight of	quality of the ha	lesignatio mmer.	on.		, 50 m.							

11150					blic										
		JACA & SIERRA Testing Laboratories Geotechnical Engineers	BSURF	ACI	E EXI	PLOF	RATI	[ <b>ON</b> ]							
PROJE	ест.	lha							E		G No.:	7-₽ ∣sheet	• 1		
	N	FE V-08 Microfuel Handling Fa	cilites							JOB: 78		OF	1		
LOCA		Cataño, PR				.ER/DRIL					ME-55		10		
						STARTE				DATE CO	OMPLETE	<b>D</b> : 12-11	-18		
		Curros In Sterra Der Elano	Final: 7.5	5		NEER: (			-	Llano					
	ING MET	.,		5											
		Tionow Stell Muger 2.25		o.							O N E	⊐W ∆Qı	1		
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO	BLOWS	SPT N	W	Qu	RC	RQD%	Qu 1 N-W 20	2 3 40 60	4		
8.00	0	FILL: gravelly sand lense, brown, gray	° 🗙	S-1	20 12	28	10		91		<del>  20</del>   <del> </del> - Y   - Y	40 60	80		
		TIEE. gravený sana jense, orovní, graj			16										
6.00		SAND trace silt, dense, brown, gray		S-2	13 18 18	36	6		93		中  -  - /	þ	-		
	- 4 -			S-3	13 11 11	22	5		97		-¢¢   `√		-		
	Do wet $S-4$ $9$ $12$ $19$ $88$ $7$ $12$ $19$ $88$														
	$ \boxed{}_{2} 8 - _{2} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{2} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - _{1} 8 - $														
	Do loose s-5 2 3 25 85														
	- 12 -														
	- 16 -														
													-		
	- 20 -														
	- 24 -														
"Rc" - "WH"	Core reco - Sample	f blows required to drive the sampling spoon Moisture Content in percentage of dry weight and Compressive Strength in tons per square overy in percent for each successive run. "F was recovered by advancing the sampler with the Unconfined Compressive Strength test ind	RQD" - Rock q	uality d f the ha	esignation mmer.	n.		g 30 in.							

201		JACA & SIERRA			blic					7					
		Geotechnical Engineers	SURF	ACI	£ EX	PLOF	RATI	ION I			<b>.</b>	8	D		
PROJE	ECT:	FE V-08 Microfuel Handling Facili	tos						<u> </u>	JOB: 78	<b>G No.:</b>	SF	IEET	1	
LOCA		Cataño, PR			DRIL	LER/DRIL	L RIG:	Eddi			ME-55	OF	-	1	
COOR	DINATE	S:			DATI	E STARTE	<b>D</b> : 12-	11-18	C	DATE CO	OMPLET	ED:	12-11-1	18	
	RIPTION	Curios R. Diciru Dei Liuno				FACE ELE			-						
	NDWAT		inal: 8			INEER: ( AL DEPTH			a Del	Llano					
DRILL	ING ME	<b>THOD:</b> Hollow-Stem Auger 2.25" ID						0.5		Ι	O N	D W	ΔOu		
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO	BLOWS	SPT N	W	Qu	RC	RQD%		2	3 60	4	
<u>7.00</u>	0	0 SANDY GRAVEL, dense, brown, yellow, gray		S-1	30 21 20	41	8		71			/			
4.00		3 SAND trace silt, dense, brown, gray		S-2	13 16 16	32	б		63			9   			
	- 4 -			S-3	9 14 14	28	5		93			¢			
	= Do wet $ = 8 - $ $ Do wet $ $ = 8 - $ $ Do wet $ $ = 5 - 4 = 7 - 10 = 21 = 89 = 7 - 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10$														
	$\mathbf{x} = 8$ Do loose $\mathbf{x} = 5$														
	<u> </u>		· · · · · · · · · · · · · · · · · · ·		32									-	
	- 12 -														
	- 16 -												-		
	- 20 -												-		
	- 24 -												-		
"Rc" - "WH"	Core reco - Sample	f blows required to drive the sampling spoon a di Moisture Content in percentage of dry weight. The Compressive Strength in tons per square foot overy in percent for each successive run. "RQD was recovered by advancing the sampler with the <u>e Unconfined Compressive Strength test indicate</u>	" - Rock q e weight o	uality d of the ha	esignatio mmer.	on.		g 30 in.					-		

전원		JACA & SIERRA								~					
		Geotechnical Engineers	SURF	AC	LLA	PLOF	KA I I			J BORING	No.:	9-P			
PROJE	ECT: N	FE V-08 Microfuel Handling Facil	ites						•	JOB: 781		SHEET	1		
LOCA		Cataño, PR			DRIL	LER/DRIL	L RIG:	Edd	ie Sev	illa / CN	1E-55		1		
COOR	DINATE	S:			DATE	STARTE	<b>D:</b> 12-	12-18	C	DATE CO	MPLETE	<b>D:</b> 12-12-	18		
	RIPTION	Curlos IN Sterra Der Elano				ACE ELE			-						
GROU	NDWAT		Final: 7			NEER: (			a Del	Llano					
DRILL	NG MET	Hollow-Stem Auger 2.25" ID			TOTA		1 (ft): 1	.0.5	1	Г					
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO.	BLOWS	SPT N	W	Qu	RC	RQD%		2 3 40 60	4		
<u>8.00</u>	0	FILL: sand some clay and gravel, dense, gray brown		S-1	65 45 45	90	3		87		т <u>т</u> \ \ 				
4.00	- 4 -	4		S-2	15 13 11	24	13		98		чУ / /				
	4       SAND, loose, brown, light gray       S-3       2       4       19       81         2       2       2       2       4       19       81         5       3       2       22       87       1														
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
	<u> </u>	Do very loose, wet		S-5	1 1 1	2	24		93				-		
	- 12 -														
	- 16 -														
	- 20 -										-				
	- 24 -												-		
"N" - "	Sumber o	f blows required to drive the sampling spoon a d	istance of	12 in 1	vith a 140	lbs hamm	er falling	y 30 in							
"W" - "Qu" - "Rc" - "WH"	Natural M Unconfin Core reco - Sample	Moisture Content in percentage of dry weight. and Compressive Strength in tons per square foo overy in percent for each successive run. "RQI was recovered by advancing the sampler with the <u>Unconfined Compressive Strength test indicat</u>	t. D" - Rock o ie weight o	quality of the ha	lesignatio ummer.	Initial G.W Final G.W m.	7. Depth . Depth	, m.							

14140		JACA & SIERRA					lic								
		Geotechnical Engineers	SUR	RF	AC	E	EXF	PLOF	RATI	[ <b>ON</b> ]				10 D	
PROJE	ECT:										E .			10-P	1
LOCAT		FE V-08 Microfuel Handling Facili Cataño, PR	ites					ER/DRIL		Edd	<u> </u>	illa / Cl	12-P	OF	1
		· · · · · · · · · · · · · · · · · · ·						STARTE						ED: 12-10	-18
DESCR		BY: Carlos R. Sierra Del Llano					SURF	ACE ELE	VATIO	N (ft):	3				
GROU	NDWAT	ER (ft): Initial: Not Found F	inal:				ENGIN	EER: (	arlos F	R. Sierra	a Del	Llano			
DRILL	NG ME	<b>THOD:</b> Hollow-Stem Auger 2.25" ID					TOTAL	DEPTH	l (ft): 1	0.5	1	1	1		
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND		SAMPLE NO.	ТҮРЕ	BLOWS	SPT N	W	Qu	RC	RQD%		□ W △ Qu 2 3	4
8.00	0	0 FILL: sand some clay and gravel, dense, gray,	$\boxtimes$	X	S-1	7	30 34	65	3		88		<u>7</u>	40 60	80
		brown		X			34 31							/	
			$\bigotimes$	X	S-2		9 16 15	31	11		93			¢ ,	
4.00	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
	S-4     2     3     82     97     3														
	8     0 very soft     S-5     WH     WH     73     91														
	- 12 -														
	- 16 -														
															-
	- 20 -														
	- 24 -														
"Rc" - "WH"	Core reco - Sample	f blows required to drive the sampling spoon a di Moisture Content in percentage of dry weight. The Compressive Strength in tons per square foot overy in percent for each successive run. "RQD was recovered by advancing the sampler with the <u>the Unconfined Compressive Strength test indicate</u>	" - Roo e weig	ck c ht c	quality of the h	des nam	signation mer.		er falling 7. Depth Depth	30 in.	I	I	+		

		Geotechnical Engineers	SURF			201			E	BORIN	G No.:	S	C-1	
PROJE	N	FE V-08 Microfuel Handling Facil	lites						'	<b>JOB:</b> 78	812-P		HEET F	
LOCA	FION:	Cataño, PR			DRILL	ER/DRIL	L RIG:	Edd			ME-55	•		
	DINATE					STARTE				DATE C	OMPLE	FED:	1-30-19	)
	RIPTION	Curros IX Bierra Der Elano				ACE ELE			•					
GROU	NDWAT	ER (ft): Initial: 7	Final: 6			IEER: (			a Del	Llano				
DRILL	NG MET	<b>THOD:</b> Hollow-Stem Auger 2.25" ID	) 		ΤΟΤΑ	L DEPTH	<b>I (ft):</b> 3	0.5	-	1	1			
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO.	BLOWS	SPT N	W	Qu	RC	RQD%	Qu 1 N-W 20	2	∆ Qu 3 60	4
8.00	0			S-1	5	17	5		93		<u> </u>	40	00	80
		FILL: SILTY SAND with gravel, brown		S-2	9 8 10 7	20	24		88			1	-	-
5.00			3		9 11	20	21		97			-	-	-
	- 4 -	DREDGE FILL: SILTY SAND, medium dense gray		S-3	11 7 8 6	14	18		85					
		Do loose, trace organic matter (wet)		S-4	4 3 2 2	4	30		83			\ 	-	-
	- 8 -			S-5	2 2 1 2	3	40		83		¢			
				S-6	2 2 1 2	3	35		88			¢   		-
	- 12 -			S-7	2 2 2 2	4	33		85		ф <u> </u>			
				S-8	2 2 1 1	3	30		81			ф   	-	-
-11.00	- 16 -	1,	9											
	- 20 -	SILTY CLAY trace sand, soft, dark gray		S-9	1 1 1	2	38		90			       		
	- 24 -	Do some sand		S-10	2 1 WH	WH	35		94			       		
"W" - "Qu" - "Rc" - "WH"	Natural M Unconfin Core reco - Sample	f blows required to drive the sampling spoon a of Moisture Content in percentage of dry weight, ned Compressive Strength in tons per square for overy in percent for each successive run. "RQI was recovered by advancing the sampler with the Unconfined Compressive Strength test indica	ot. D" - Rock o he weight o	quality d	¥ I ¥ F esignation nmer.	nitial G.W Final G.W n.	7. Depth . Depth	30 in.	<u> </u>	<u> </u>	<u>   :</u>		<u>.</u>	<u> </u>

444		
LUL -	JACA & S	
	Geotechnical	

		Geotechnical Engineers	G			UNI	ACL					IBER:		2-1	
PC			PROJECT							<u>,</u>	JOB	12-P	SH	IEET	2
БС		LOG (CONT. SHEET)		NFE	<u>V-0</u>	8 Micro	fuel Hanc	lling Fac	ilites		/8.		OF	:	2
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO.	ТҮРЕ	BLOWS	SPT N	W	Qu	RC	RQD%		_ ₩ 2 40	△ ^Q 3 60	4 80
-21.00	- 28 -	SANDY CLAY some silt, stiff to very stiff, brown, white	29 red,	s-11	Ţ	5 9 10	19	28		100			-		
	- 32 -												-	-	
	- 36 -												-	-	
	- 40 -												-		
	- 44 -												-	-	
	- 48 -												-	-	
	- 52 -													-	
	- 56 -												-	-	
"N" - 1	Number of	f blows required to drive the sampling spoor	a distance of	12 in. 1	with	1 a 140 l	bs hamme	er falling	30 in.				-	-	-
"Rc" - "WH"	Core reco - Sample	f blows required to drive the sampling spoor foisture Content in percentage of dry weigh ed Compressive Strength in tons per square wery in percent for each successive run. "I was recovered by advancing the sampler with e Unconfined Compressive Strength test ind	RQD" - Rock q th the weight o	uality f the h	des:	ignation ner.									

1446	Public JACA & SIERRA Testing Laboratories SUBSURFACE EXPLORATION LOG													
		Testing Laboratories Geotechnical Engineers	SURF	ACE	E EXI	PLOF	RATI	[ <b>ON</b> ]				SC	2	
PROJ	ECT:	μ							E	IOR	<u>G No.:</u>		<u>2</u> т	1
LOCA		FE V-08 Microfuel Handling Fac	ilites		ו ווסח	.ER/DRIL		<b>D</b> 11			812-P	OF		1
	DINATE	Cataño, PR <b>s</b> :				STARTE					ME-55 DMPLET	ED: 1-3	)-19	
	RIPTION													
GROU	NDWAT		Final: 7			NEER: (			-	Llano				
DRILL	ING MET	<b>THOD:</b> Hollow-Stem Auger 2.25" II	)		тота	L DEPTH	<b>I (ft):</b> 2	5.5						
			0	<u>o</u>							O N	$\Box$ W $\triangle$	Qu	
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO	BLOWS	SPT N	W	Qu	RC	RQD%	Qu 1 N-W 20		í —	4
8.00	0		• 🗙	S-1	12	11	15		93		<u>२०</u> भि	40 6	0 8	80
		FILL: silty sand with gravel, brown			8							-	-	
				S-2	4	8	25		89				-	
5.00		FILL: sandy clay with limestone gravel, brown	3 XXX		3 5 2							-	-	-
	- 4 -	yellow		S-3	4 16 8	24	28		93			) \ \		
		Do wet		S-4	8 4 3 3 3	6	33		98		6	Ļ \		-
0.00	- 8 -	SILTY CLAY trace sand, very soft, dark gray	8	S-5	3 1 WH	WH	45		77				-	
				S-6	WH WH WH WH	WH	48		85			   		
	- 12 -			S-7	WH WH WH WH	WH	40		82			   		:
		Do trace shell fragments		S-8	WH WH WH WH	₩Н	35		80			↓   	-	-
-11.00	- 16 -		19											
	- 20 -	SILTY SAND with coral fragments, loose, gra	ıy	S-9	4 4 2	6	25		89					
-16.00	- 24 -	CLAYEY SAND, medium dense, red, gray, white	24	S-10	1 4 7	11	28		100			<u> </u>		· · · ·
"W" - "Qu" - "Rc" - "WH"	"N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.         "W" - Natural Moisture Content in percentage of dry weight.         "Qu" - Unconfined Compressive Strength in tons per square foot.         "Re" - Core recovery in percent for each successive run.         "RQD" - Rock quality designation.         "WH" - Sample was recovered by advancing the sampler with the weight of the hammer.         "P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.													

	Public JACA & SIERRA Jesting Laboratories SUBSURFACE EXPLORATION LOG												
Testing Laboratories SUBSURFACE EXPLORATION LOG													
		Geotechnical Engineers								G No.:	B-	5	
PROJ	ECT:							Ī	JOB: 78	12 P	∣S⊦	IEET	1
LOCA		IFE V-08 Microfuel Handling	g Facilites	וופח	LER/DRII		E44:				OF	-	3
		Cataño, PR			E STARTI					ME-55	-n-	1_30_10	
					FACE ELI						_U.	1-50-15	
		Curlos II. Sterra Der Ela	<b>Final:</b> 15.5		NEER: (				Llano				
					AL DEPTH				Liano				
DRILL	ING ME				1		5.5		1	O N	o w	A 011	
	DEPTH		LEGEND SAMPLE NO	YPE						U II		i Qu	
(ft)	(ft)	DESCRIPTION	RPLE NO	BLOWS	SPT	W	Qu	RC	RQD%		2	3	4
	0.00		L LE		N					N-W 20		- i	;
₹ 7.00 6.34	0		0	8	16	18				20	40	60	80
0.34		Concrete Slab 8 inch.	0.66	9 7							Ē	-	÷
		SILTY SAND with gravel, brown									-	-	÷
4.00			3								-	-	:
		Concrete Slab 2.5 feet									Ē	-	Ē
	- 4 -										-	-	-
1.50		-	5.5								Ē	-	Ē
0.50	Ţ		6.5								÷	-	-
	-	Water										-	-
	- 8 -											-	
											÷	-	-
												-	÷
											÷	-	Ē
		-									-	-	
	- 12 -	-											
		-									Ē	-	÷
		-									-	-	-
											-	-	Ē
											-		<u> </u>
											-	÷	÷
											-	-	-
											÷	-	-
												-	-
	- 20 -									-	-	-	
-14.50			21.5								-	-	-
		SILTY CLAY trace sand and shell frag dark gray	ments, S-1	2 1	2			93		М	-	-	-
		uaik giay		1 3	6			07		} :	Ē		÷
	- 24 -			333	Ø			97			-	-	
	27		S-3	3	4			100		¢			
	S-4 1 100 0												
"N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.         "W" - Natural Moisture Content in percentage of dry weight.         "Qu" - Unconfined Compressive Strength in tons per square foot.    Final G.W. Depth													
"W" - "Qu" -	Unconfir	Moisture Content in percentage of dry w ned Compressive Strength in tons per sq	uare foot.	, i	Initial G.V Final G.W	v. Depth . Depth							
"WH"	- Sample	overy in percent for each successive run was recovered by advancing the sample	r with the weight of the ha	ammer.									
"P" - A	<u>P" in th</u>	he Unconfined Compressive Strength tes	t indicates the use of the p	ocket Per	netrometer	•							

Ť															
		JACA & SIERRA Testing Laboratories		S	SUB	SI	URF	ACE	EXF	PLOI	RA]	<b>FION L</b>	OG		
		Geotechnical Engineers			_		_	_				G NUMB		-5	
B		G LOG (CONT. SHEET)	PROJE	СТ								JOB 7812-1	15	SHEET	2
					NFE	V-0	8 Micro	ofuel Hand	dling Fac	ilites					<u>3</u>
	DEPTH			Q	Ö.	щ	SV						) []	Δ	ę.,
(ft)	(ft)	DESCRIPTION		LEGEND	PLE	TYP	BLOWS	SPT	w	Qu	RC	RQD%	1 2	2	1
	0.00			Ш	SAMPLE NO.		ш	N					+ +	+	4
	- 28 -			ПИ									<u>v 20 40</u>	0 60	80
					1								: :	-	•
														-	
					1									-	-
	- 32 -				1								<u> </u>		
	52				1								: :	-	-
-27.00			34												
		SILTY CLAY with some sand, stiff, red, yellow, white	reddish	H	S-5		5 2	7			100	T		-	
	26			H		H	5							-	-
	- 36 -			H										-	÷
			ľ	H										-	-
				H										-	-
		Do very stiff	ľ	H	S-6	7	4 6	15			100		1	-	
	- 40 -			H			9								
				H										-	
				H										-	
			ľ	Ш										-	-
	- 44 -	Do hard	ľ	H	S-7		7	22			100				:
				H			9 13						1	-	-
				H										-	-
				H										-	
	- 48 -			H										<u> </u>	
				H	S-8		7	31			100		$\rightarrow$	-	-
			ľ	H			13 18							-	
				H										-	
	- 52 -			H											
				H										-	-
				H	S-9		C	0.0						-	
		Do some fine gravel fragments		H	5-9		6 9 17	26			96			-	
	- 56 -		ľ	$\mathbb{H}$		H	± /								
	50		ľ	$\mathbb{H}$										-	
			ľ	$\mathbb{H}$										-	-
-52.00	2.00 59														
	Number o	f blows required to drive the sampling spo	on a dista	nce of	12 in. v	with	n a 140 l	bs hamm	er falling	30 in.	1		<u>- Ŷ -</u>		
"W" - "Qu"	Natural 1 - Unconfi	f blows required to drive the sampling spo Moisture Content in percentage of dry wei ned Compressive Strength in tons per squa	ght. are foot.	_			, ≢ Iı ₹ F	nitial G.W inal G.W	/. Depth . Depth						
"WH'	' - Sample	overy in percent for each successive run. was recovered by advancing the sampler	with the w	eight o	of the h	amı	mer.								
"P"	A "P" in tl	ne Unconfined Compressive Strength test	indicates the	he use	of the p	pocl	ket Pene	etrometer.							

	JACA & SIERRA Testing Laboratories
	Geotechnical Engineers

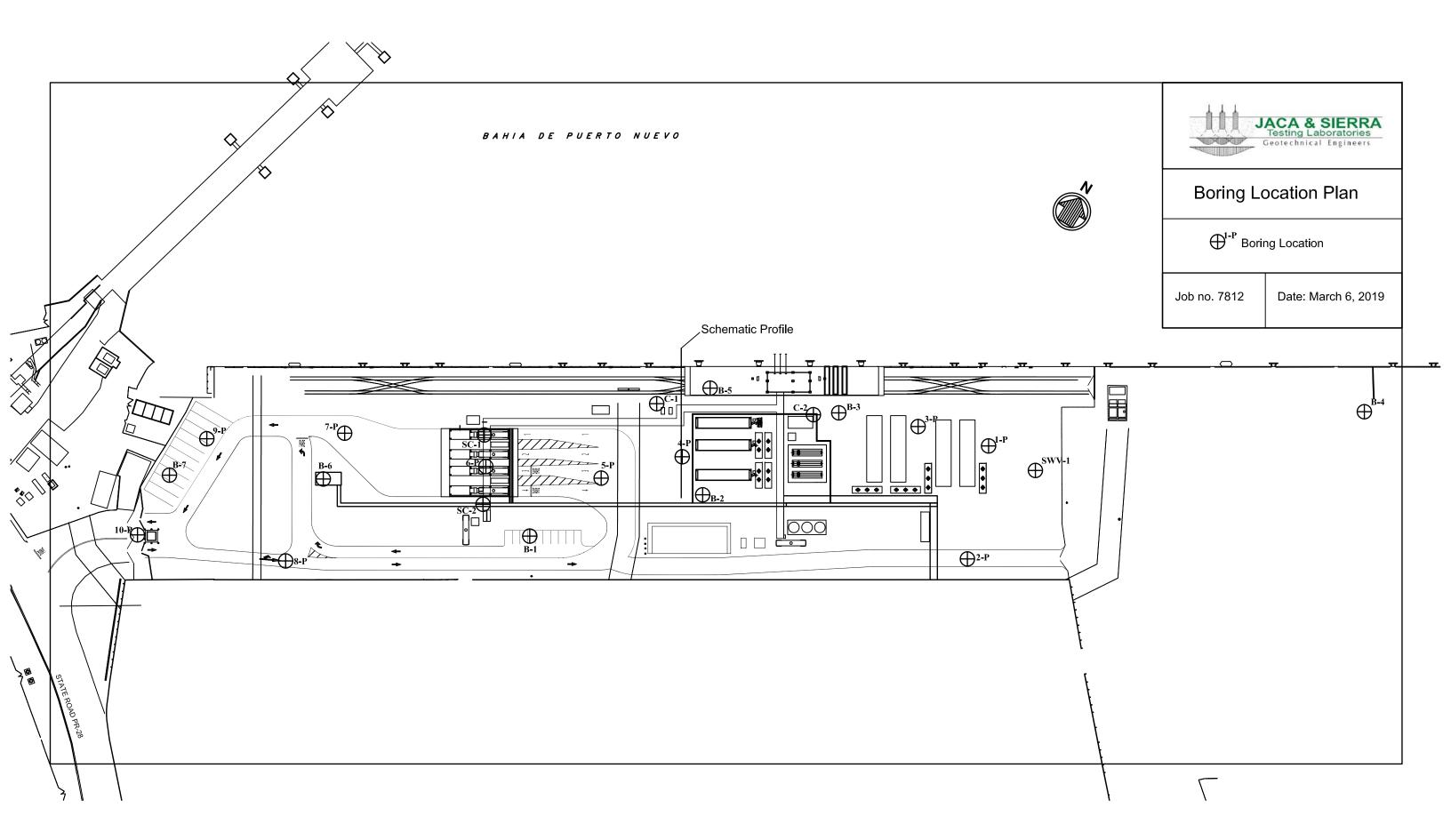
		Geotechnical Engineers	~				n CL			ORIN	G NUN		<b>B-</b> :	5	
B	סאוסר	G LOG (CONT. SHEET)	PROJECT								JOB	12-P	SH	IEET	3
		BLOG (CONT. SHEET)		NFE	V-0	8 Micro	fuel Hand	lling Fac	ilites	_	/8		OF	:	3
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO.	ТҮРЕ	BLOWS	SPT N	W	Qu	RC	RQD%		2 10	∆ Qı 3	4
		CLAYEY SAND some silt, dense, brownish	n red	S-10		б 9	26			98		11-10 20	40	60	80
-57.00	- 60 -	SILTY CLAY trace sand, very stiff, browni	64	S-11		9 17 7 10	22			100					
	- 68 -	red				10									
	- 72 -														
	- 72 -													-	
	- 80 -													-	
	- 88 -														
"Rc" - "WH"	"N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.         "W" - Natural Moisture Content in percentage of dry weight.         "Qu" - Unconfined Compressive Strength in tons per square foot.         "Rc" - Core recovery in percent for each successive run.         "RQD" - Rock quality designation.         "WH" - Sample was recovered by advancing the sampler with the weight of the hammer.         "P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.														

	Public JACA & SIERRA Testing Laboratories SUBSURFACE EXPLORATION LOG													
		JACA & SIERRA Testing Laboratories Geotechnical Engineers	SURF	ACE	E EXI	PLOF	RATI	ION I						
		Geotecnnicai Engineers							E	BORIN	G No.:	<b>B</b> -	6	
PROJE	ECT: N	FE V-08 Microfuel Handling Facil	ites						•	JOB: 78	12-P	SH OF	IEET	1
LOCA	TION:	Cataño, PR			DRILL	.ER/DRIL	L RIG:	Eddi			ME-55			
	DINATE					STARTE				OATE CO	OMPLET	ED:	12-20-1	18
	RIPTION	Curros R: Sterra Der Elano							-					
	NDWAT	•••	Final: 5.	5		NEER: ( L DEPTH			a Del	Llano				
DRILL	ING MET	<b>THOD:</b> Hollow-Stem Auger 2.25" ID					i (ii.). 8	50.5			ΟΝ	□ w	Δ Qu	
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO	BLOWS	SPT N	w	Qu	RC	RQD%	Qu 1	2	3	4
8.00	0	0		0 S-1	10	38	7		83		N-W 20 무	<u>40</u>	60	80
		FILL: sand with gravel some clay, medium, moist, dark graish			12 26		,					/	-	-
				S-2	10 14 18	32	8		88		<u>\</u>		-	-
4.00	- 4 -	SAND some gravel trace silt, medium, moist, light brown		S-3	10 14 19	33	17		95					
	<u> </u>			S-4	10 16 17	33	19		91				-	
	- 8 -	Do very dark brown to dark gray, moist		S-5	5 14 10	24	22		98			/ / /		
-6.00	- 12 -	14 SILTY CLAY some sand with rock fragments, soft, wet, dark gray		S-6	3 4 2	6	38		100				, , , , , , , , , , , , , , , , , , ,	
-11.00	- 20 -	19 SILTY CLAY trace sand, soft to soft, very dark gray to dark brown		S-7	WH 2 2	4	77		93					
	- 24 -	Do trace shells and rock fragments		S-8	WH WH 2	2	70		91				 / / /	   
"Rc" - "WH"	"N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.       ////////////////////////////////////													

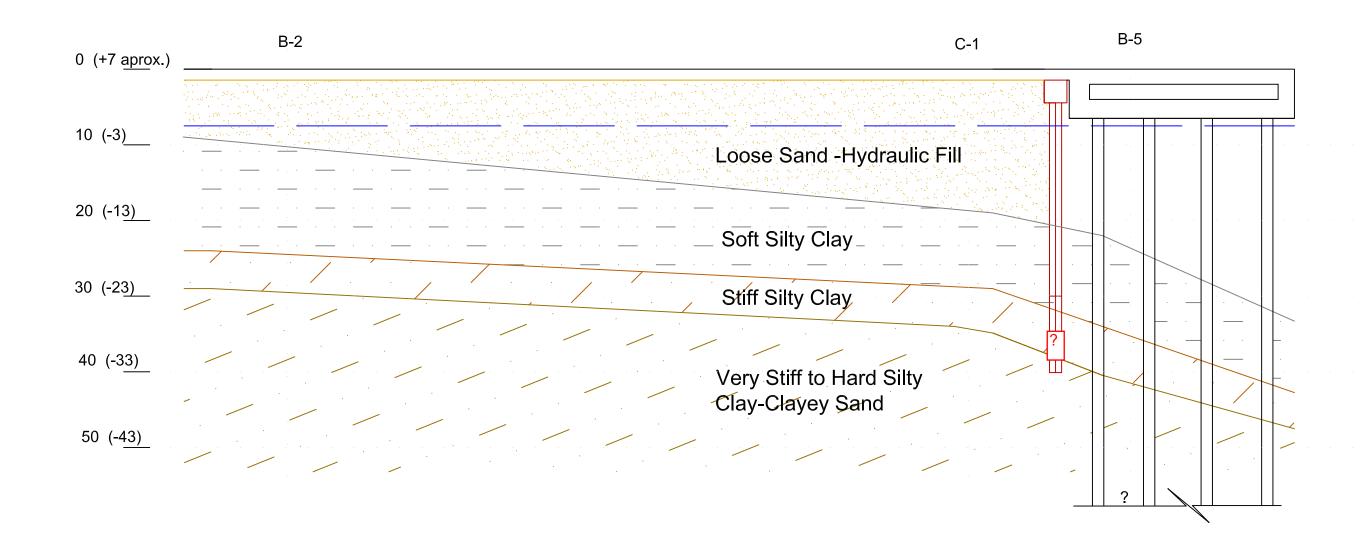
Ť												
		JACA & SIERRA Testing Laboratories Geotechnical Engineers		SUB	SUR	FACE	EXI			TION LOG		
			PROJECT					BC	RIN	G NUMBER: B-6 JOB SHEET 2		
B	ORING	G LOG (CONT. SHEET)		NFE	V-08 Mi	crofuel Han	dling Fac	ilites		7812-P OF 3		
ELEV (ft)	DEPTH (ft)	DESCRIPTION	LEGEND	o.	TYPE BLOWS	SPT N	w	Qu	RC	$RQD\%_{Qu} \xrightarrow{Qu} 234$		
	0.00			SAI						N-W 20 40 60 80		
	- 28 -			S-9	WH WH 1	1	36		89			
-26.00	- 32 -	CLAY some silt, very stiff, reddish browr	<u>34</u>	S-10	3	17	35		100			
	- 36 -	gray			7				100			
	- 40 -	Do red, reddish brown		S-11	7 12 14	26	33		100			
	- 44 -	Do yellowish brown		S-12	7 11 16	27	38		100			
-41.00	- 48 -	SILTY CLAY with rock fragments trace s very stiff, moist, yellowish brown to reddi yellow	49 sand, ish	S-13	7 11 16	27	34		100			
	- 52 -			S-14	11 14 14	28	39		100			
-51.00	- 56 -		59									
"W" - "Qu" "Rc" - "WH"	Natural M - Unconfir - Core reco ' - Sample	f blows required to drive the sampling spo Moisture Content in percentage of dry weig ned Compressive Strength in tons per squar overy in percent for each successive run. was recovered by advancing the sampler van the Unconfined Compressive Strength test i	ght. re foot. "RQD" - Rock vith the weight	quality of the h	⊈ ⊈ designati ammer.	Initial G.V Final G.W on.	V. Depth 7. Depth	30 in.				

+ $+$ $+$	
	<b>JACA &amp; SIERRA</b>
had had had	Testing Laboratories
	Geotechnical Engineers

		Geotechnical Engineers								вс	RIN	IG NUMBER: B-6 JOB SHEET 3
B		GLOG (CONT. SHEET)	PROJE	ЕСТ								<b>JOB SHEET</b> 3
					NFE	V-(	08 Micro	ofuel Hand	dling Fac	ilites		OF 3
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION		LEGEND	SAMPLE NO.	ТҮРЕ	BLOWS	SPT N	w	Qu	RC	RQD% Qu 1 2 3 4
	- 60 -	SILTY CLAY some sand, stiff, wet, yello brown	owish		S-15		5 5 7	12	32		100	N-W 20         40         60         80           Image: Image of the state of the st
	- 64 -	Do some limestone weathered fragment	ts		S-16	/	8 6 6	12	25		95	
	- 68 -				S-17		5 5 8	13	27		100	
	- 72 -				S-18	/	5 7 10	17	36		100	
	- 76 -				S-19	7	26 40/4"	40/4"	12		30	
	- 84 -											
	- 88 -											
"Rc" -	- Core reco	f blows required to drive the sampling spo Moisture Content in percentage of dry wei red Compressive Strength in tons per squa overy in percent for each successive run.	"RQD" -	Rock of	quality	des	signation	bs hamm nitial G.W Tinal G.W	er falling 7. Depth . Depth	30 in.		
"P" - 2	A "P" in th	was recovered by advancing the sampler view Unconfined Compressive Strength test in	indicates t	he use	of the	poc	ket Pene	etrometer.				


		JACA & SIERRA	~		blic		<b>.</b>			7			
		Geotechnical Engineers	SURF	ACI	£ EX	PLOF	RATI	ON I			• • •	B 7	
PROJE	ECT:								E .			<b>B-7</b>	1
LOCA		FE V-08 Microfuel Handling Facil	ites			.ER/DRIL		E 1.1:			312-P	OF	3
		Cataño, PR <b>s</b> :				STARTE					ME-55	<b>ED:</b> 1-11-1	8
	RIPTION					ACE ELE							-
GROU	NDWAT	ER (ft): Initial: 7	Final: 5		ENGI	NEER: (	Carlos F	R. Sierra	a Del	Llano			
DRILL	ING MET	<b>THOD:</b> Hollow-Stem Auger 2.25" ID			ΤΟΤΑ	L DEPTH	<b>l (ft)</b> : 6	0.5					
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO.	BLOWS	SPT N	w	Qu	RC	RQD%		□ w △ Qu 2 3	4
8.00	0.00			<b>ഗ്</b> ട-1	25	47	3		87		N-W 20	40 60	80
		FILL: sand with gravel some silty clay, dark brown			18 29	, r	5		07				-
6.00		SILTY CLAY some sand trace of shell fragments, medium, moist, reddish brown		S-2	6 5 5	10	25		100				-
4.00	- 4 -	SAND some coral and shell fragments, loose, grayish brown		S-3	10 6 3	9	14		91				
2.00	<u>∵</u> - 8 -	EXECUTE A SILTY CLAY with sand, very soft, moist, yellowish brown		S-4	1 WH 1	WH	40		92				-
-1.00	- 12 -	SILTY CLAY trace sand, very soft, yellowish brown and gray		S-5	1 1 3	4	43		100				
-6.00	- 16 -	14 SILTY CLAY with shell fragments some sand, soft, moist, dark gray to black		S-6	1 2 1	3	68		100			/	]
-11.00	- 20 -	19 SILTY CLAY trace sand, very soft, yellowish brown to dark brown		S-7	WH WH WH	WH	38		95				
-16.00	- 24 -	24 SILTY CLAY with some sand, very stiff, brownish red, light gray, yellow		S-8	3 9 10	19	36		100				
"W" - "Qu" - "Rc" - "WH"	Natural M Unconfin Core reco - Sample	f blows required to drive the sampling spoon a d Moisture Content in percentage of dry weight. and Compressive Strength in tons per square foo overy in percent for each successive run. "RQI was recovered by advancing the sampler with th <u>the Unconfined Compressive Strength test indicat</u>	t. D" - Rock ( ie weight (	quality d	⊒ I ⊒ I esignation mmer.	nitial G.W Final G.W 1.	7. Depth . Depth	30 in.	I	I	<u>ı t</u>	<u> </u>	

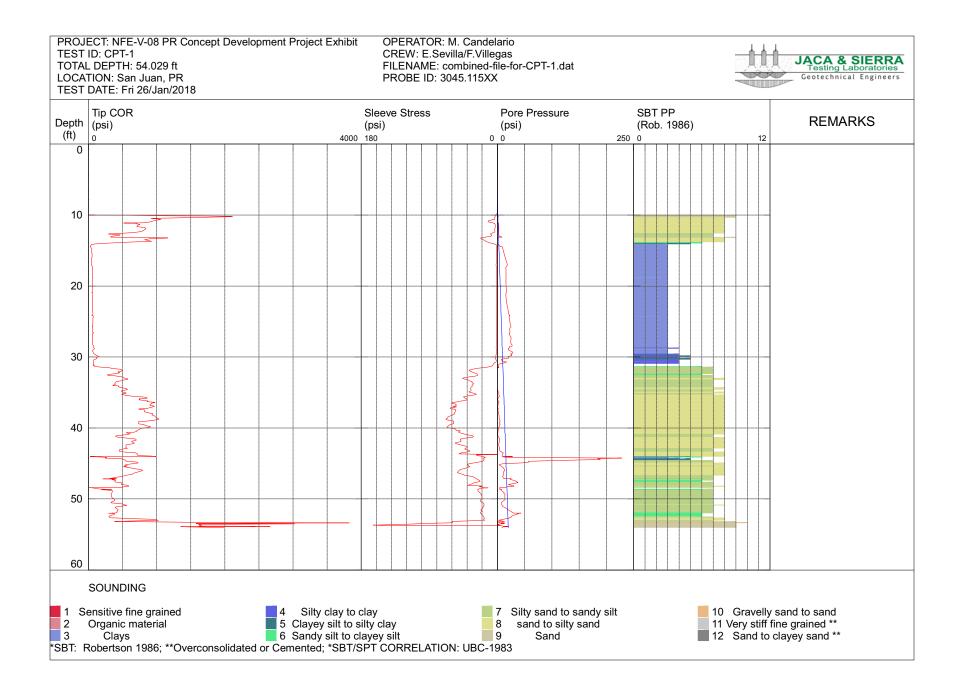
JACA & S Testing Lab Geotechnical	

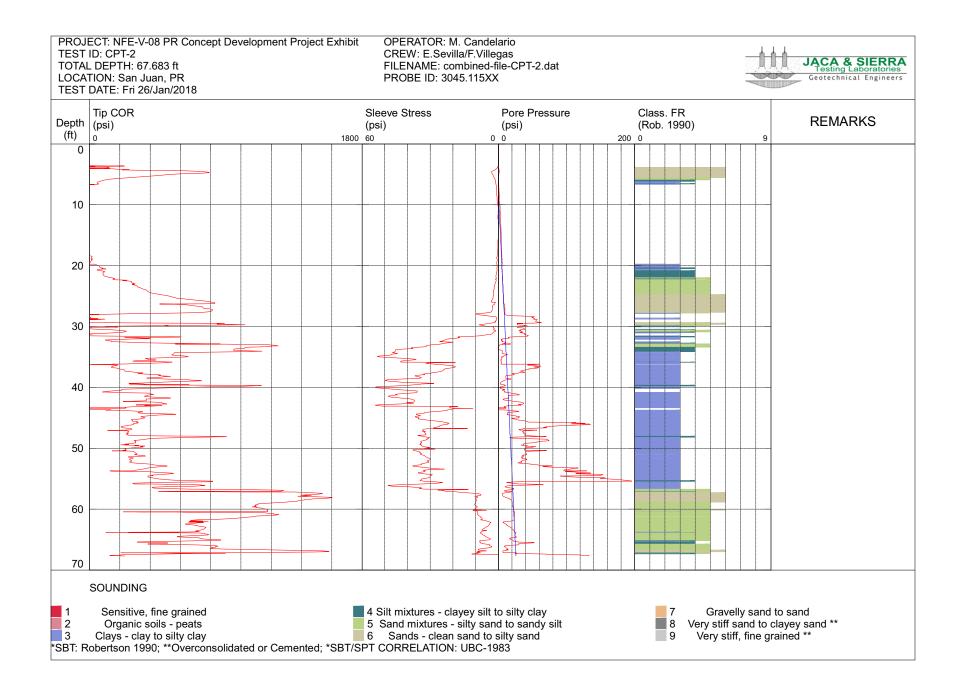

			PROJECT						BC		I <mark>G NUN</mark> Job	IDER:		/ EET	
BC	RING	LOG (CONT. SHEET)	PROJECT									12-P			
				NFE	V-0	8 Micro	fuel Hand	lling Fac	ilites	I		O ^N	<b>OF</b> □ ^W	Δ Q	u
.EV )	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO.	ТҮРЕ	BLOWS	SPT N	W	Qu	RC	RQD%		   40	∆	4 80
	- 28 -			S-9		3 9 10	19	28		100			-		
	- 32 -	Do reddish yellow		S-10	Ţ	4 9 10	19	25		100					
	- 36 -			S-11		5 9 12	21	23		100					
	- 44 -			S-12		4 10 12	22	30		100			]		
	- 48 -			S-13		4 10 12	22	29		100					
	- 52 -			S-14		6 8 11	19	38		100					
" - N		blows required to drive the sampling spo loisture Content in percentage of dry weig ed Compressive Strength in tons per squa	on a distance of	12 in.	with	n a <u>1</u> 40 1	bs hamme	er falling	30 in.			0		-	

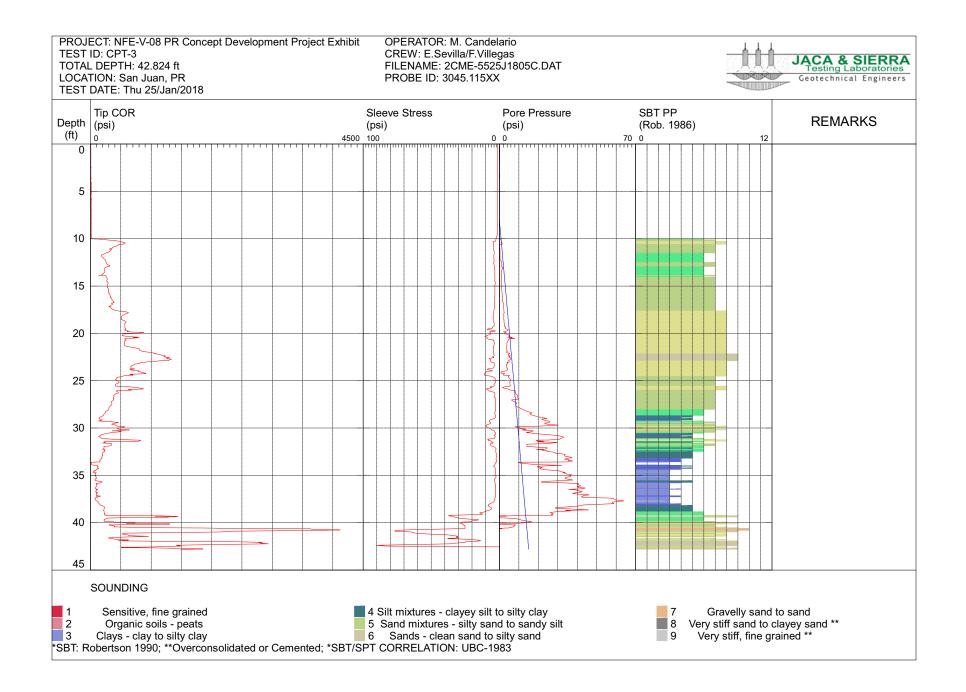

444		
LLL .	JACA & S Testing Lab	SIERRA oratories
	Geotechnical	

		Geotechnical Engineers					ACE			ORIN	G NUN		<b>B-</b>	7	
BC	DRING	LOG (CONT. SHEET)	PROJECT							·	JOB	12-P	SH	IEET	
				NFE	<u>V-0</u>	8 Micro	ofuel Hand	dling Fac	ilites		1				
ELEV (ft)	DEPTH (ft) 0.00	DESCRIPTION	LEGEND	SAMPLE NO.	ТҮРЕ	BLOWS	SPT N	W	Qu	RC	RQD%		2 10	3 60	4
				S-15	5	б	18	35		100		11-10 20	40	60	80
	- 60 -					8 10								-	
													-	-	
	- 64 -												-	-	
													Ē	-	÷
	- 68 -												÷	-	-
													-	-	-
													-	-	-
												÷	÷	÷	÷
														-	
	- 72 -														
													÷	-	÷
													-	-	÷
													÷	÷	÷
	- 76 -												÷	-	÷
												-	÷	-	÷
													-	-	-
													÷	Ē	÷
													-	-	÷
	- 80 -												÷	÷	-
													÷	-	÷
													÷	÷	÷
													÷	÷	÷
	- 84 -												-	-	-
	04												-	÷	÷
													÷	-	÷
													÷	-	÷
													÷	Ē	÷
	- 88 -												÷	:	-
													÷	-	-
													-	-	-
													-	-	-
"Rc" - "WH"	Core recov - Sample v	blows required to drive the sampling spo foisture Content in percentage of dry weig ed Compressive Strength in tons per squar- very in percent for each successive run. was recovered by advancing the sampler very bunconfined Compressive Strength test i	"RQD" - Rock of with the weight of	quality of the l	v desi hamr	ignatior mer.	1.		30 in.	<u> </u>	I	<u> </u>			




# IDEALIZED SCHEMATIC SUBSURFACE PROFILE




# Appendix B

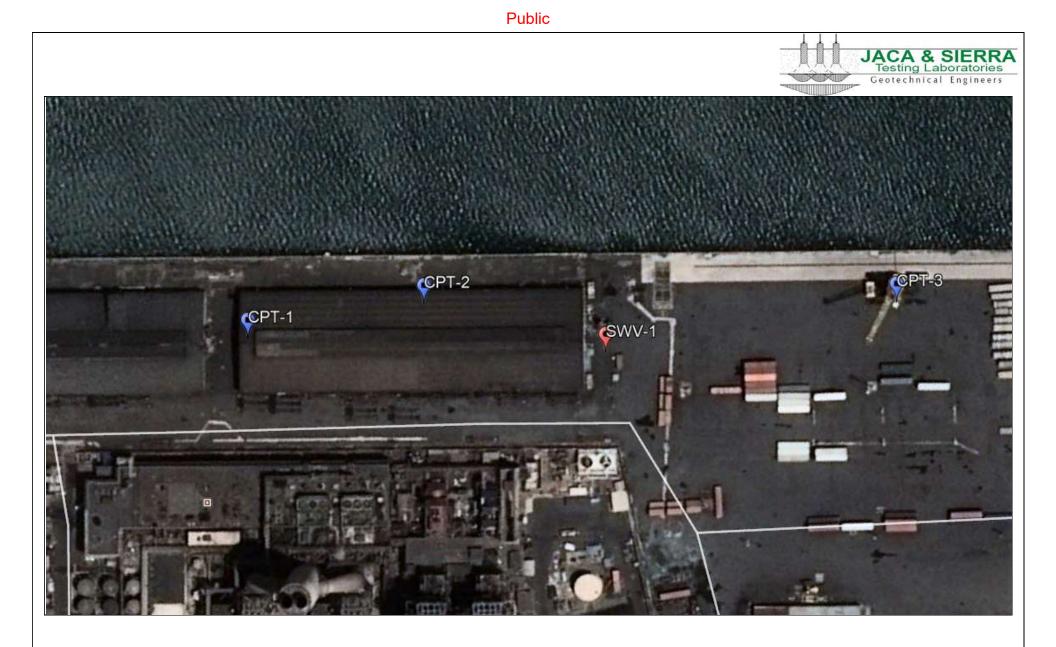
## Cone Penetration Tests and Downhole Seismic Test










# Downhole Seismic Test - Boring no. SWV-1 Pseudo Interval Shear Wave Velocity, Vs (ft/s) 0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 0 10 Calculated @ 10ft Intevals 20 30 Depth Beneath Ground Surface (ft) 40 50 60 70 80 90 100

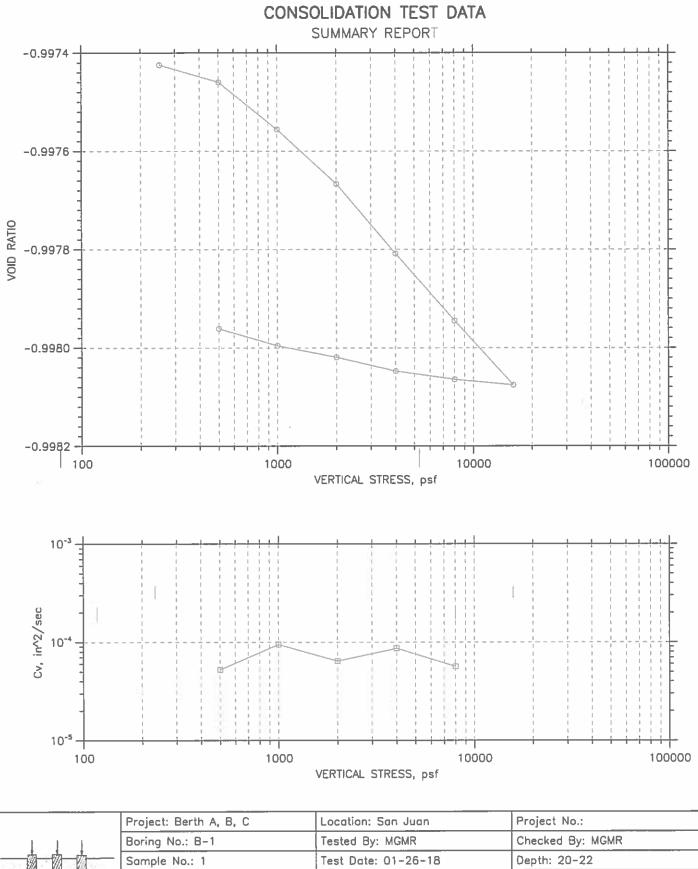


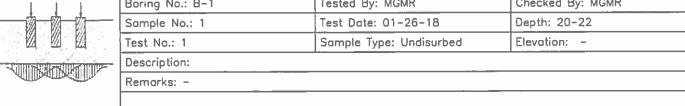
## TABLE 1. SHEAR WAVE VELOCITY MEASUREMENT ASTM D7400-08 DOWNHOLE SEISMIC TEST - BORING SWV-1

			01201-0		-1			
Operator:		M. Candela	rio					
Test Date / Weather:			Dec. 27, 20	17; 9-10am/82	2 F, cloudy			
Source:			12 lb sledge	e hammer	-			
Downhole Receiver:			BHG 2 Tria	xial Geophone	1			
Recording Equipment			ES 3000-S	eismograph				
Borehole Information:			Grouted ca	sed borehole				
Method of Installation:			3.25 inch ID Hollow Stem Augers					
Casing Diameter:			2 inch Sch.40 PVC					
Clamp Method:			Mechanical Spring					
Ground Surface Elevation @ S	Source, E	g:	0 m					
Shear Wave Source Horizonta	l Offset,	Xs:	7.5	ft				
Compression (P) Wave Source	e Offset,	Хр	3.5 ft					
Pipe Stickup:			0 ft					
Receiver Offset from Reference	e Point:		0	ft				
Ground Surface Elevation @ E	, Eg:	0	m					

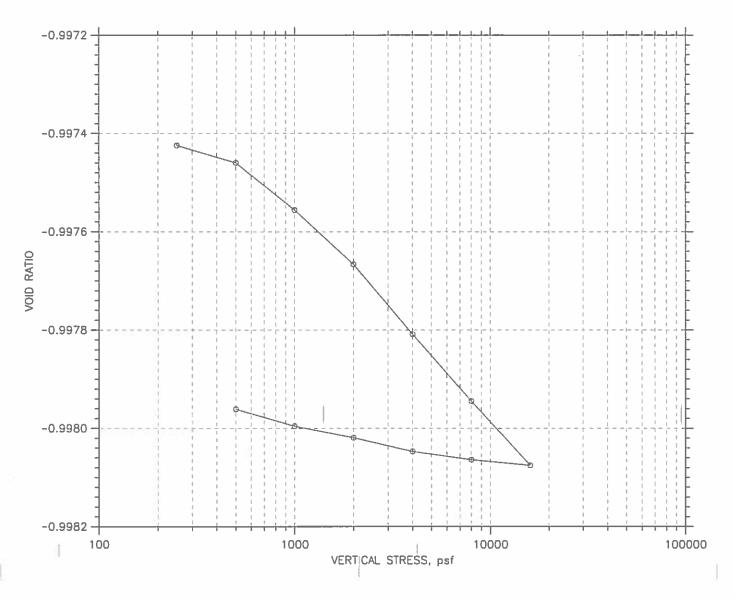
Creana Gana		@ Borehole	, ⊏g.	0	m		
Recorded Geophone Depth (ft)	Corrected Geophone Depth (ft)	Receiver Depth, D₅(ft)	Receiver Elevation (m)	Source Slant Distance, L _R (ft)	Reference Shear Wave Arrival Time (millisec)	Interval Arrival Time Difference ∆Ts (millisec)	Interval Shear Wave Velocity, Vs (ft/sec)
5	5	5	-1.52	9.01	5.9		
						6.1	571
10	10	10	-3.05	12.50	12		
						13.4	319
15	15	15	-4.57	16.77	25.4	10.4	010
10	10	10	-4.07	10.77	20.4	18.7	245
20	20	20	6 10	21.36	44.1	10.7	240
20	20	20	-6.10	21.30	44.1	44.0	
						11.9	398
25	25	25	-7.62	26.10	56		
						8	603
30	30	30	-9.15	30.92	64		
						6.1	799
35	35	35	-10.67	35.79	70.1		
						7.9	621
40	40	40	-12.20	40.70	78		
						8.1	608
45	45	45	-13.72	45.62	86.1	0.1	000
40	40	45	-13.72	40.02	00.1	3.9	1266
50	50	50	45.04	50.50	00	3.9	1200
50	50	50	-15.24	50.56	90	4.0	4004
						4.8	1031
55	55	55	-16.77	55.51	94.8		
						3.2	1549
60	60	60	-18.29	60.47	98		
						3	1655
65	65	65	-19.82	65.43	101		
						2.9	1714
70	70	70	-21.34	70.40	103.9		
						2.5	1989
75	75	75	-22.87	75.37	106.4		
75	75	15	-22.01	15.51	100.4	2.4	2074
00	00	00	04.00	00.25	109.9	2.4	2014
80	80	80	-24.39	80.35	108.8	4.0	0700
			0.5.5.			1.8	2766
85	85	85	-25.91	85.33	110.6		
						1.4	3558
90	90	90	-27.44	90.31	112		
						2	2492
95	95	95	-28.96	95.30	114		




Approximate Locations of Cone Penetrometer Tests and Downhole Seismic Test

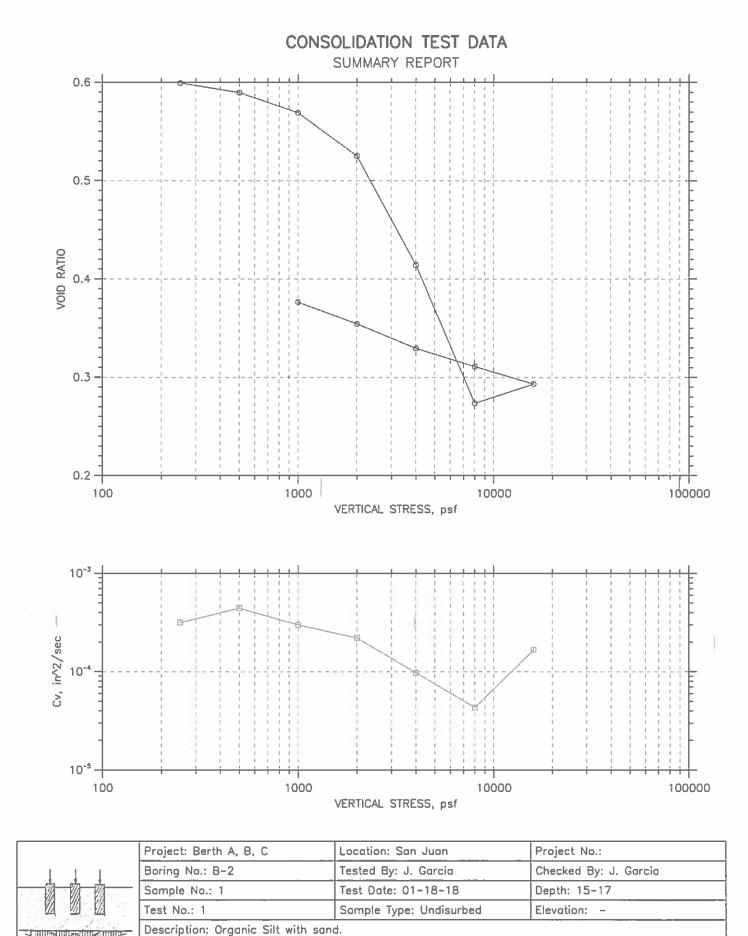

NFE-V-08 Puerto Rico Concept Development Project Exhibit




# Appendix C

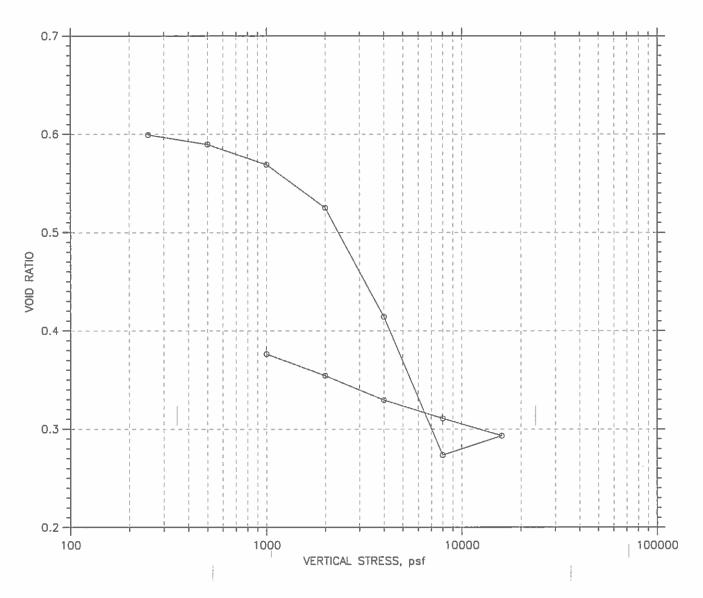
Laboratory Test Reports





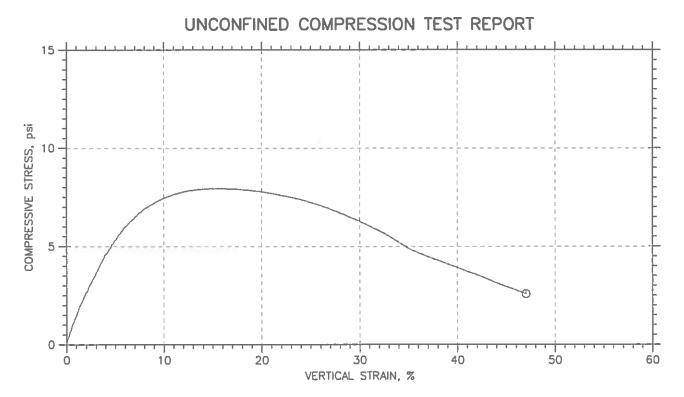

#### CONSOLIDATION TEST DATA SUMMARY REPORT




					Before Test	After Test
Overburden Pre	essure: 1 psf			Water Content, %	62.42	43.44
Preconsolidatio	on Pressure: 2 p	sf		Dry Unit Weight, pcf	62230	79600
Compression In	ndex: 0.26			Saturation, %	-162.72	-113.17
Diameter: 2.5	in	Height: 1 in		Void Ratio	-1.00	-1.00
LL:	PL:	PI:	GS: 2.60			

Project: Berth A, B, C	Location: San Juan	Project No.:
Boring No.: B-1	Tested By: MGMR	Checked By: MGMR
Sample No.: 1	Test Date: 01-26-18	Depth: 20-22
Test No.: 1	Sample Type: Undisurbed	Elevation:
Description:		
Remarks: -		

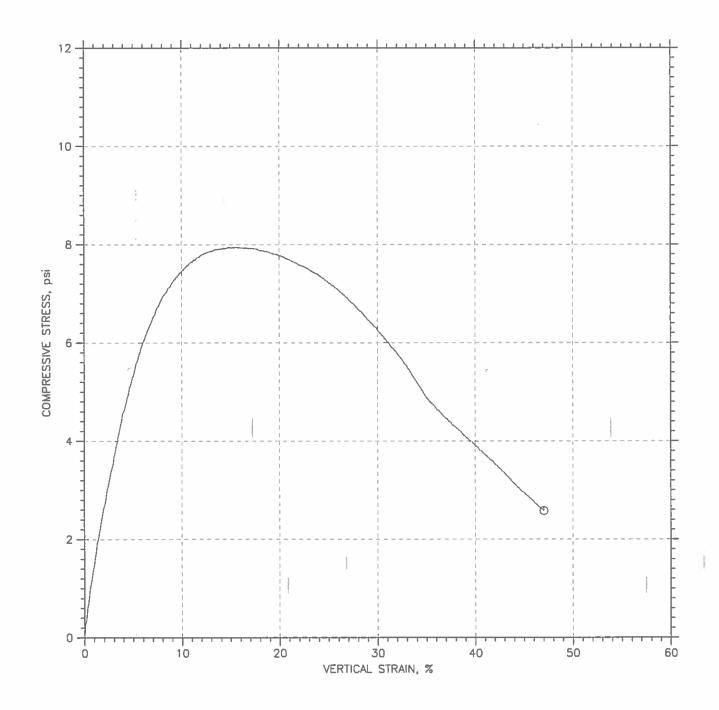


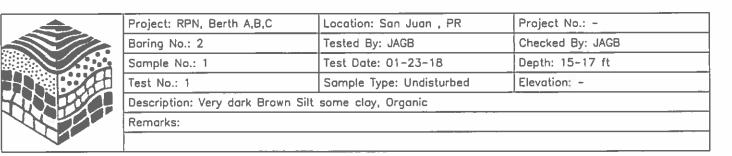

Remarks: -

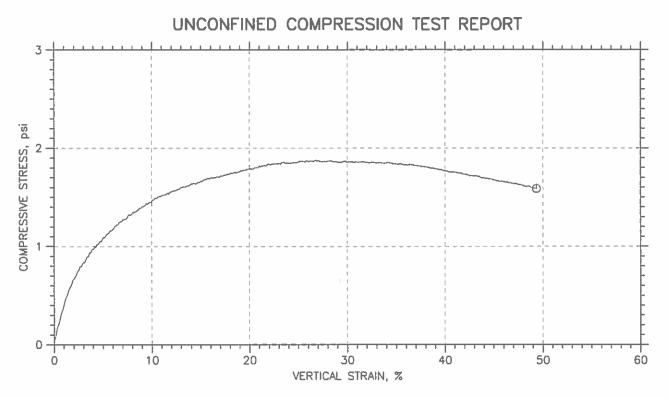
# CONSOLIDATION TEST DATA SUMMARY REPORT



					Before Test	After Test
Overburden Pressure: 1 psf			Water Content, %	857.85	18.65	
Preconsolidation Pressure: 2 psf			Dry Unit Weight, pcf	101.4	117.9	
Compression Index: 0.26			Saturation, %	3714.31	128.81	
Diameter: 2.45 in Height: 1 i		Height: 1 in		Void Ratio	0.60	0.38
LL:	PL:	PI:	GS: 2.60			


	Project: Berth A, B, C	Location: San Juan	Project No.:		
	Boring No.: B-2	Tested By: J. Garcia	Checked By: J. Garcia		
	Sample No.: 1	Test Date: 01-18-18	Depth: 15-17		
	Test No.: 1	Sample Type: Undisurbed	Elevation: -		
	Description: Organic Silt with sand.				
	Remarks: -				

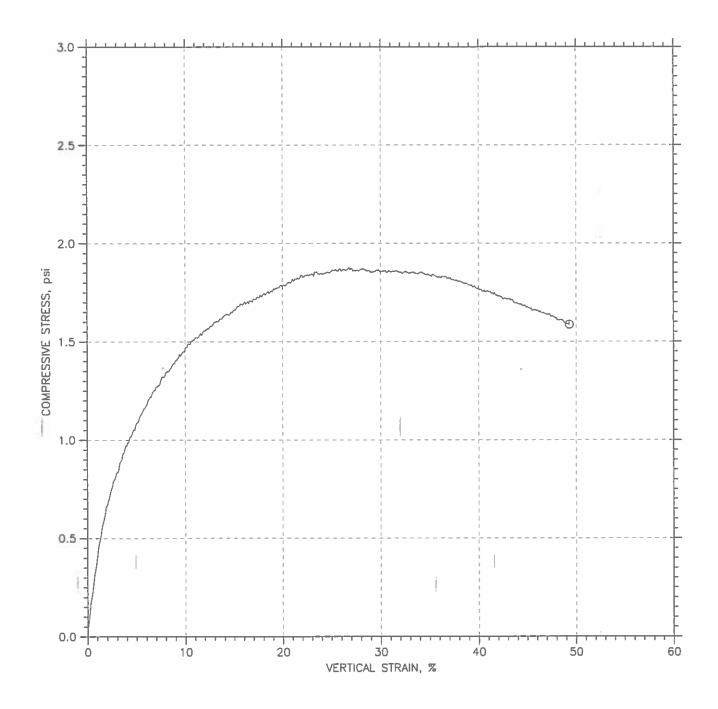




Sy	mbol	O	· · · · · · · · · · · · · · · · · · ·	
Test No.		1		
Diameter, in		2.856		
4	Height, in	6.005		
ia -	Water Content, %	28.97		
Initial	Dry Density, pcf	74.52		
	Saturation, %	62.94		
	Void Ratio	1.22		
Ur	confined Compressive Strength, psi	7.943		
Ur	ndrained Shear Strength, psi	3.972		
Time to Failure, min		4.0032	1	
St	rain Rate, %/min	1		
Es	timated Specific Gravity	2.65		
Lic	guid Limit			
Pl	astic Limit			
Ple	asticity Index			
Failure Sketch				

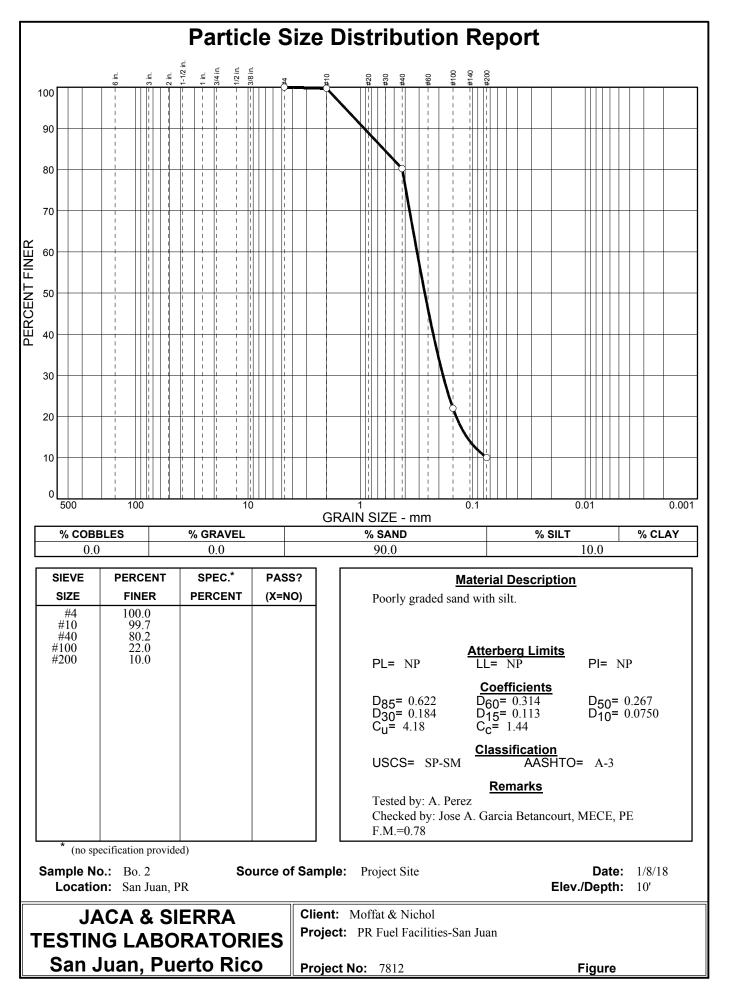
Project: RPN, Berth A,B,C
Location: San Juan , PR
Project No.: -
Boring No.: 2
Somple Type: Undisturbed
Description: Very dark Brown Silt some clay, Organic
Remarks:

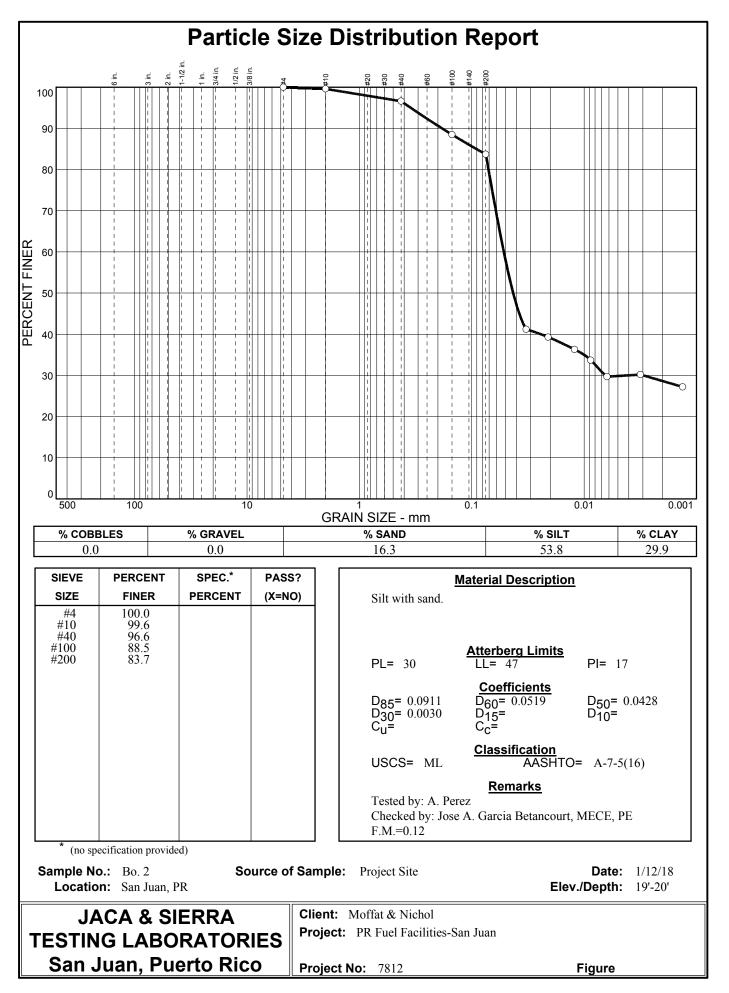
# UNCONFINED COMPRESSION TEST REPORT

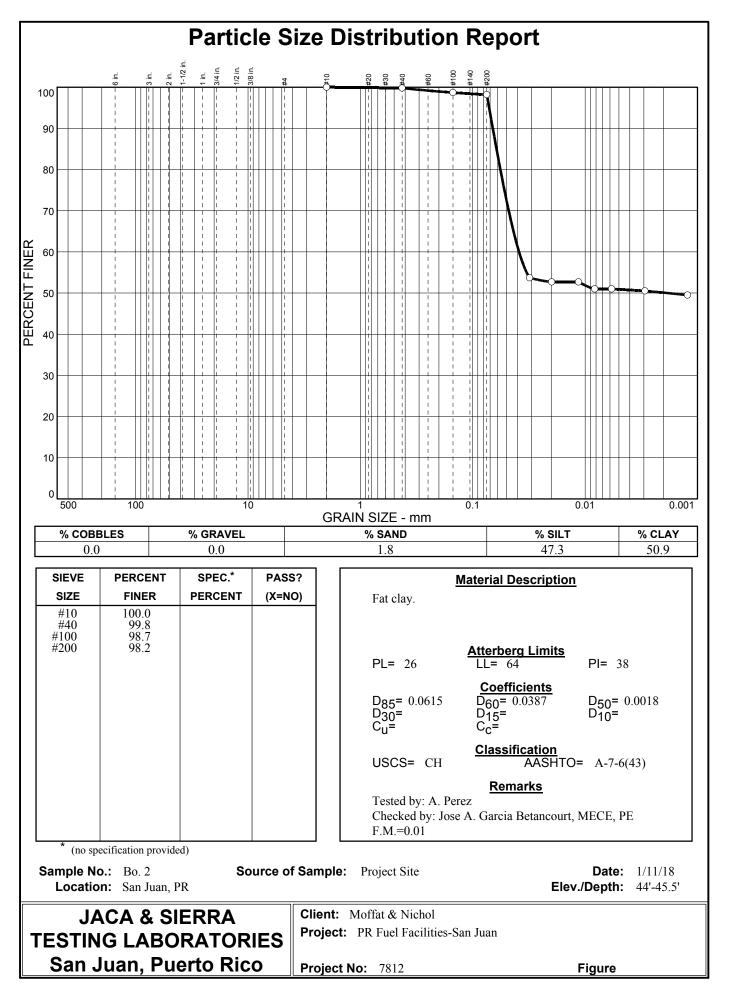




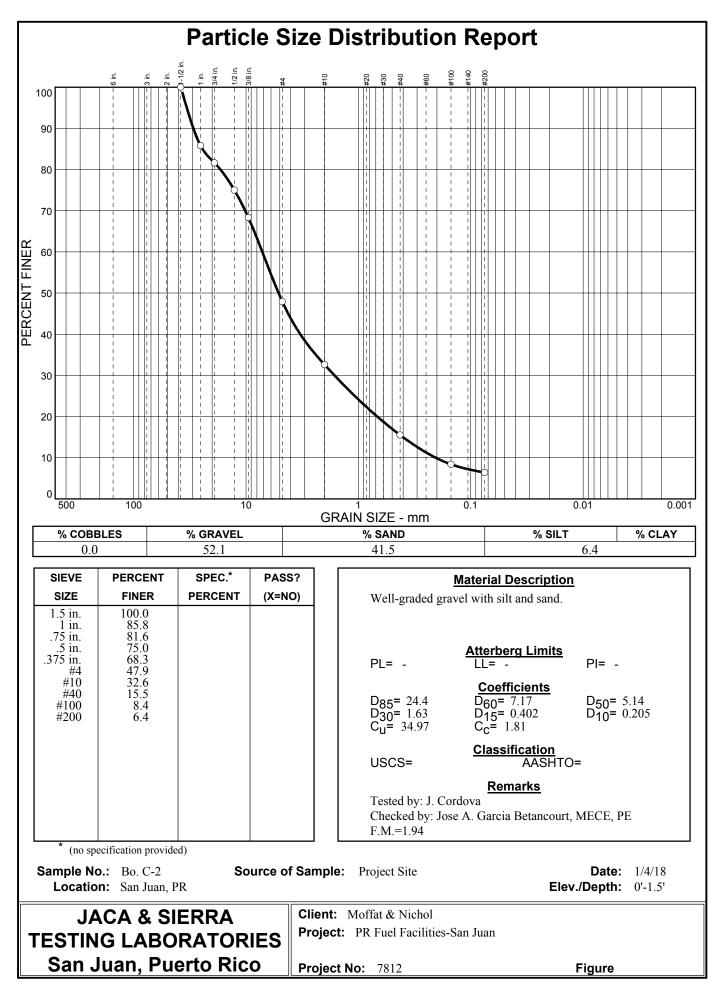


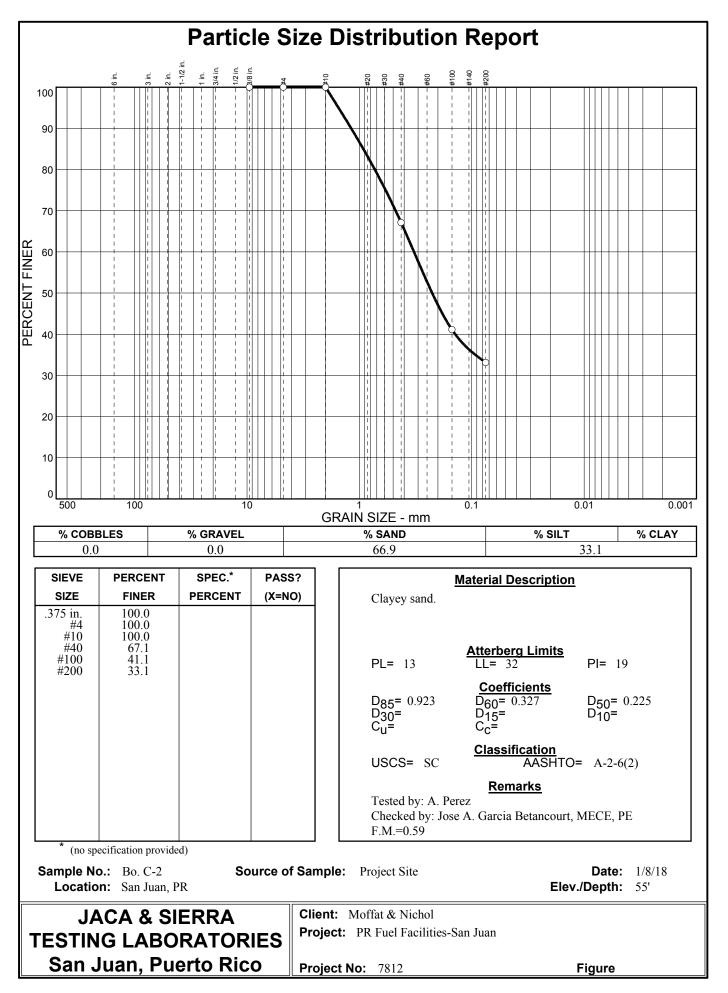


Sy	mbol	O		
Te	st No.	1		
Diameter, in		2.844		
	Height, in	5.987		
Initial	Water Content, %	76.71		
Ē	Dry Density, pcf	55.36		
	Saturation, %	102.23		
	Void Ratio	1.99		
Ur	nconfined Compressive Strength, psi	1.877		
Ur	ndrained Shear Strength, psi	0.9385		
Tir	me to Failure, min	6.8048	1	
St	rain Rate, %/min	1	10	
Es	timated Specific Gravity	2.65		
Li	quid Limit			
PI	astic Limit			
PI	asticity Index			_
Fo	ilure Sketch			

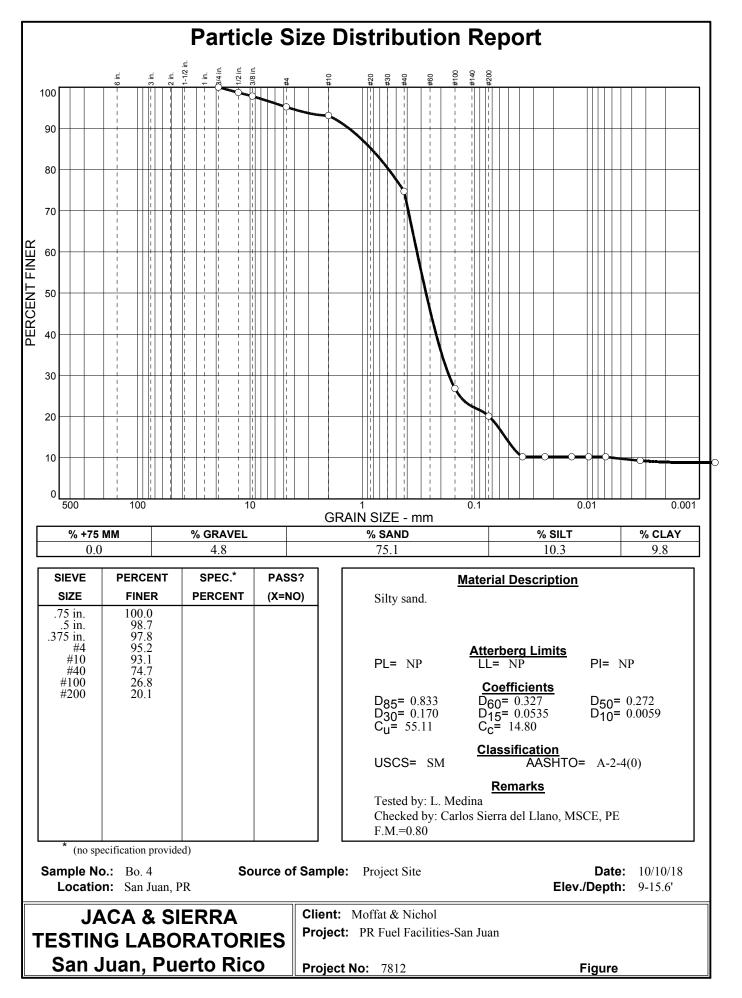

Project: RPN, Berth A,B,C
Location: San Juan , PR
Project No.: -
Boring No.: 1
Sample Type: Undisturbed
Description: Very dark Brown Silt some clay.
Remarks:

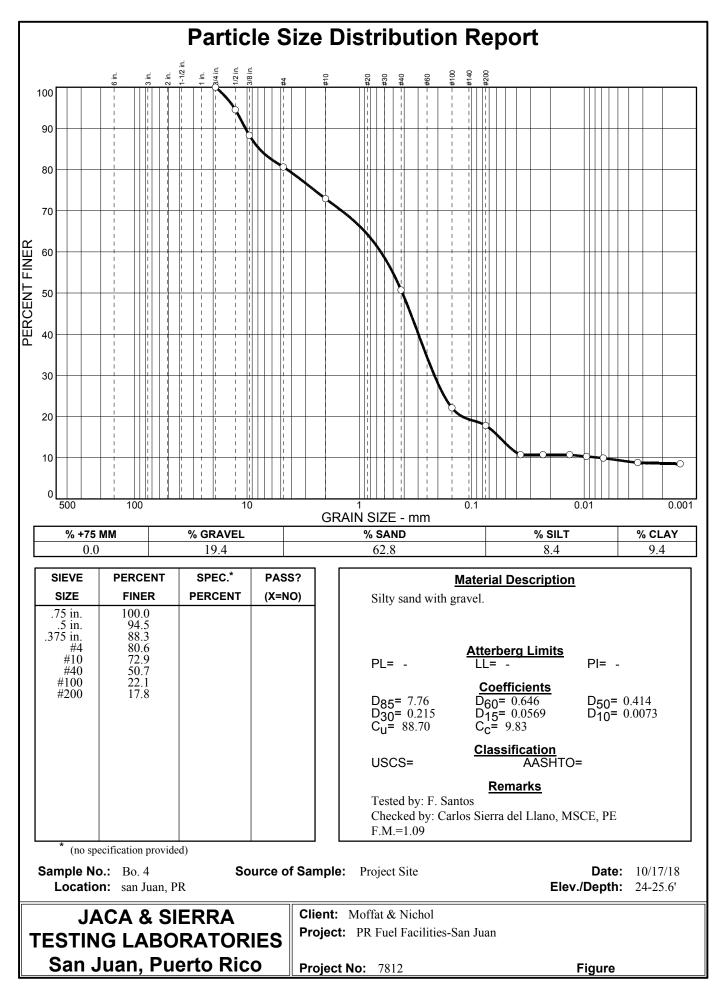

# UNCONFINED COMPRESSION TEST REPORT

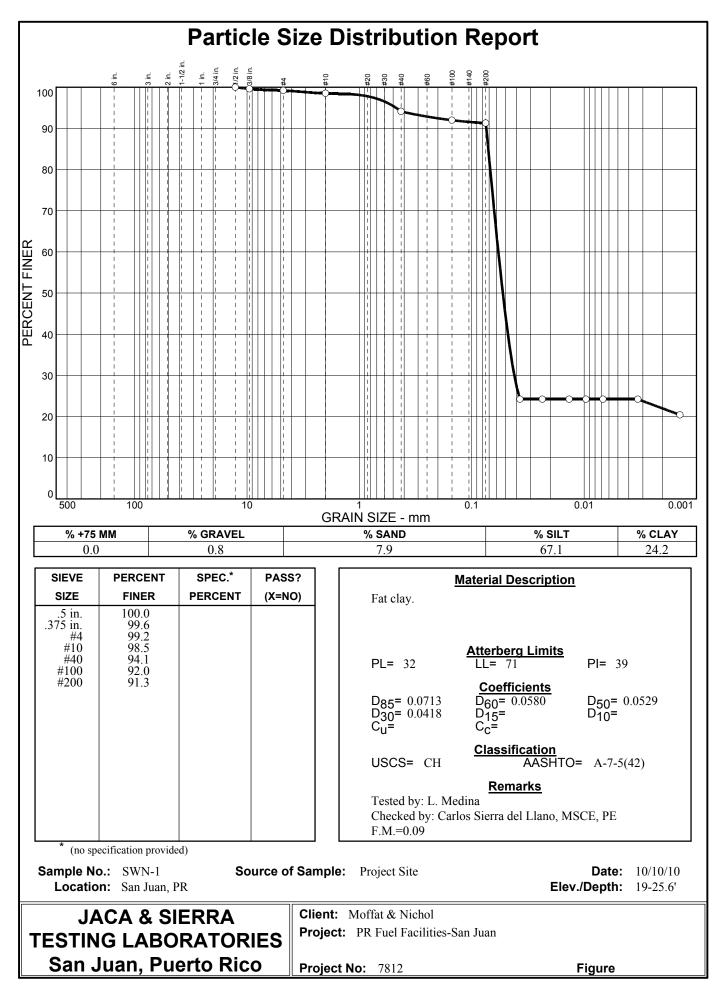


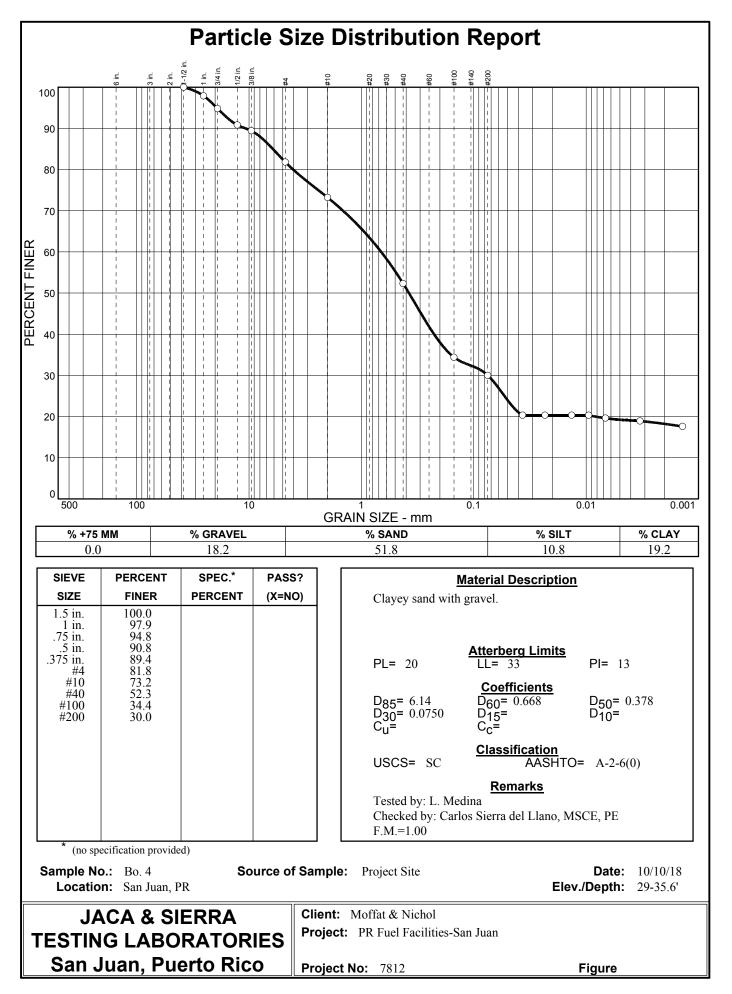

	Project: RPN, Berth A,B,C	Location: San Juan , PR	Project No.: -		
	Boring No.: 1	Tested By: MGMR	Checked By: MGMR		
	Sample No.: 1	Test Date: 01-25-18	Depth: 15-17 ft		
	Test No.: 1	Sample Type: Undisturbed	Elevation: -		
	Description: Very dark Brown Silt some clay.				
	Remarks:				

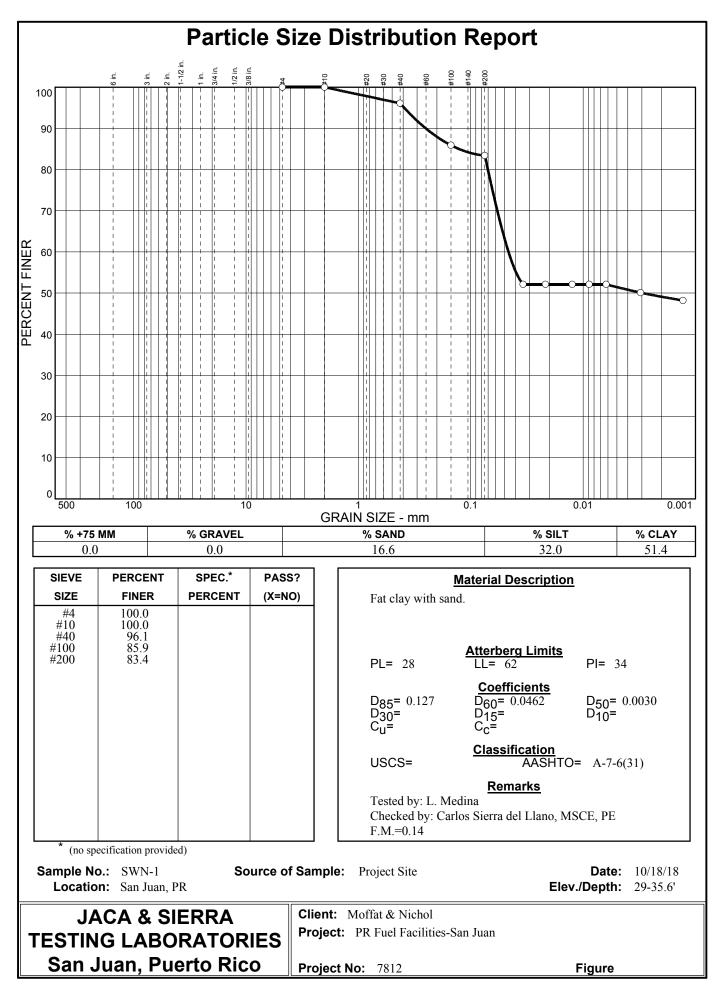


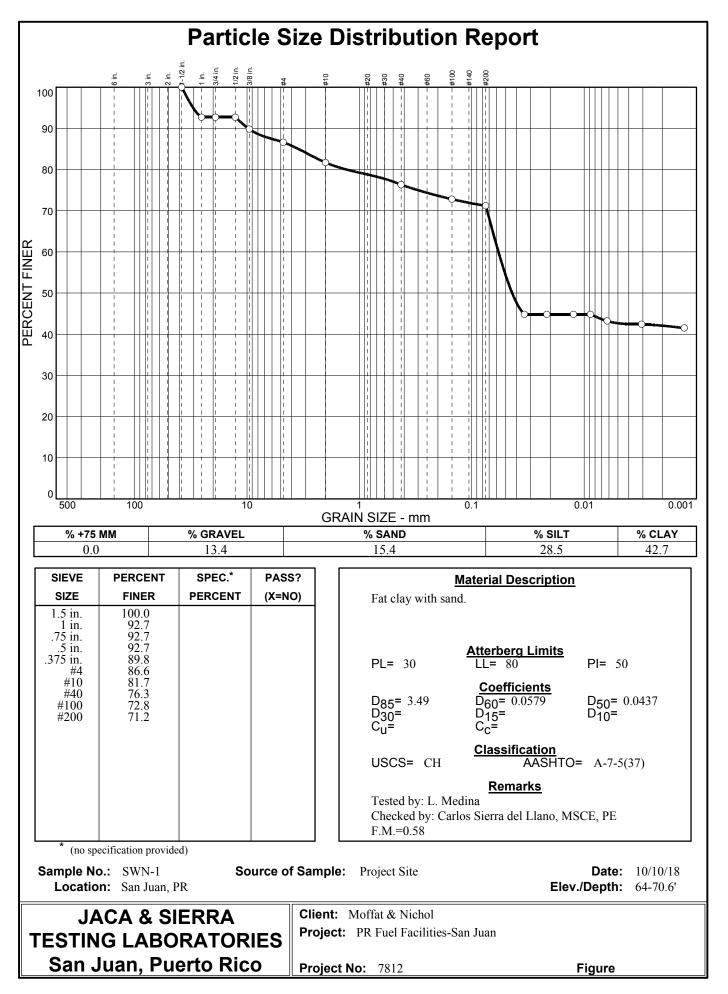







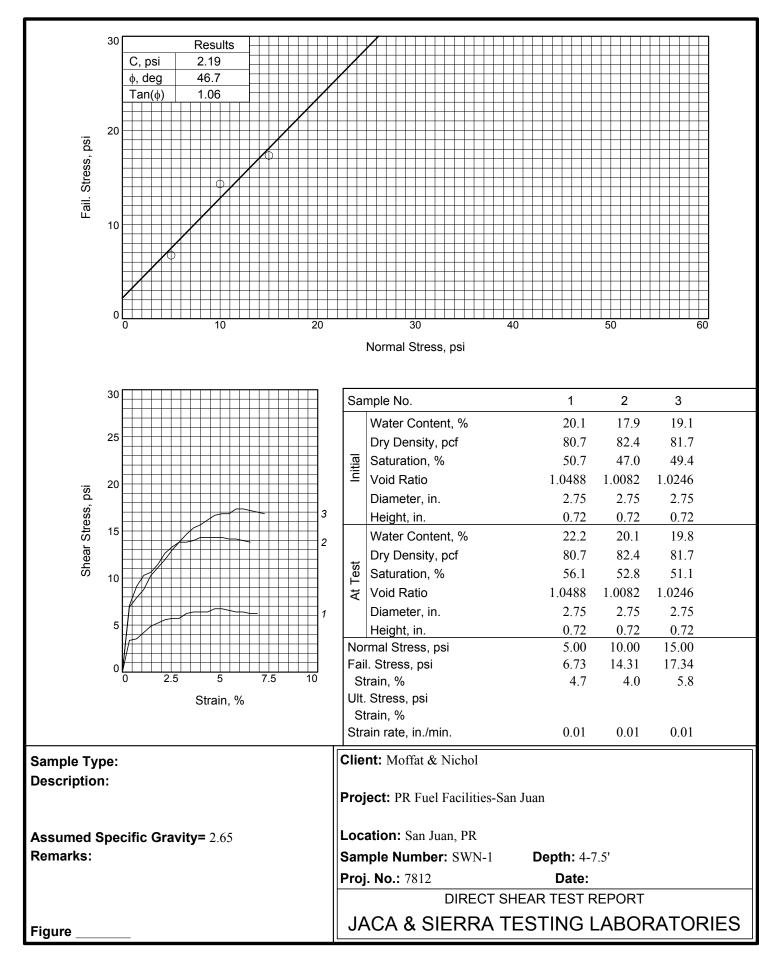


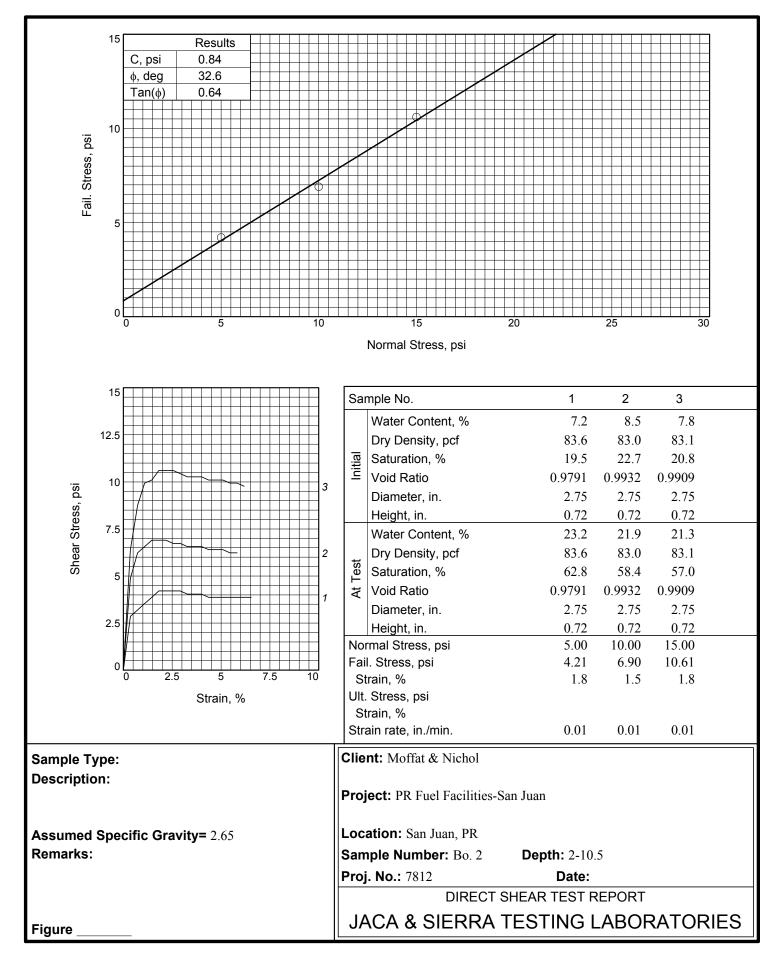


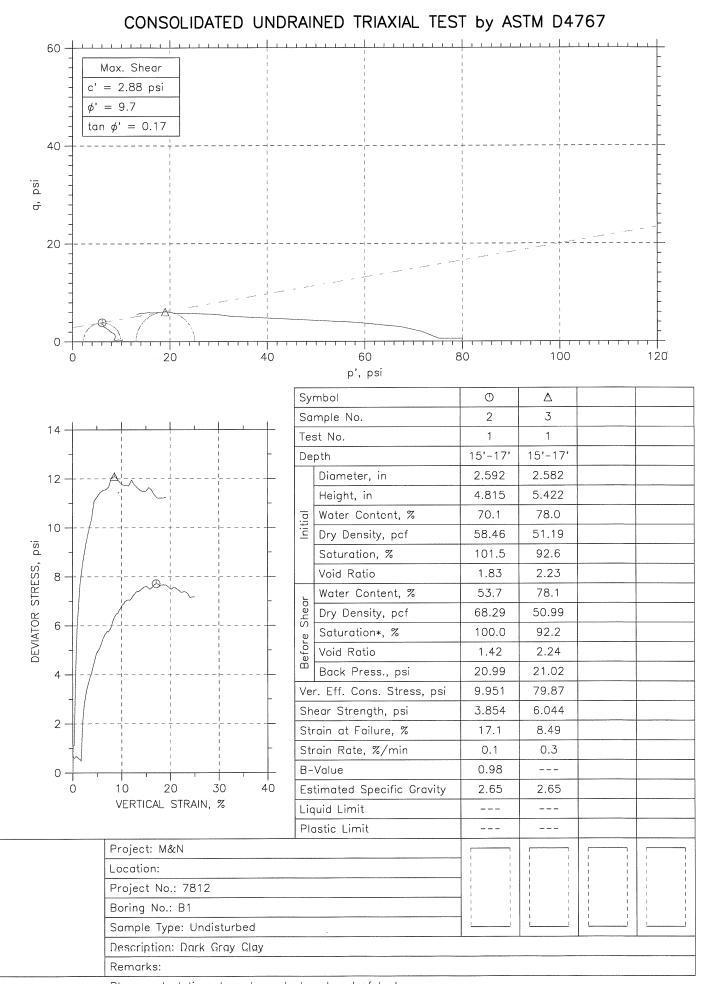





### LABORATORY TESTING SERVICES


Client:	Moffat & Nichol	Transported by:		Jaca & Sierra	
Source of Samples:	Project Site-San Juan PR -	Date of Sampl	le Receipt:	2-Jan-18	
	Provided by Client	Date of Testing:		4-Jan-18	
Project:	PR Fuel Facilities	Standard Test Methods:		ASTM D 4318	
Location:	San Juan, PR				
	RES	JULTS			
Sample ID	Liquid Limit, LI	_	Plasticity Index, PI		
Boring 3 35'	52			33	
Boring 3 15'	NP		NP		

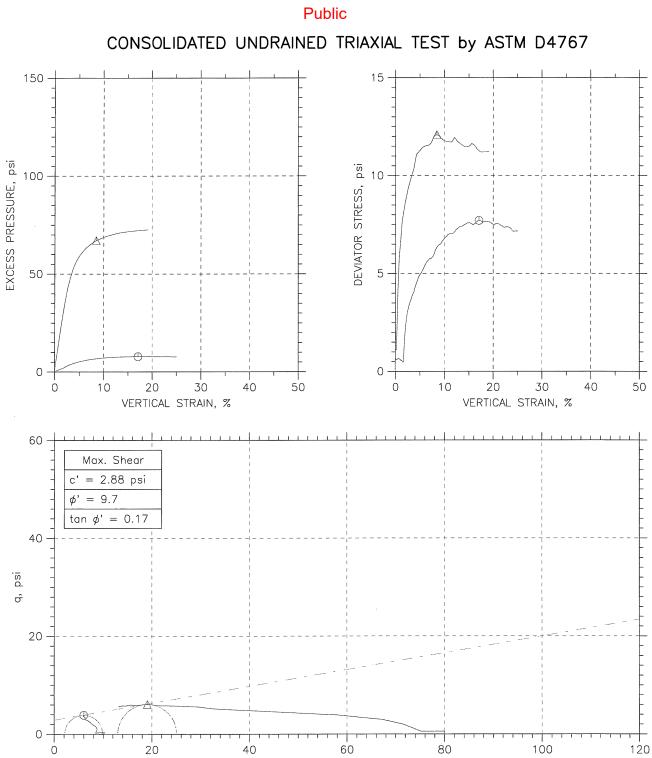

#### **COMMENTS:**


No additional comments

Respectfully Submitted, JACA & SIERRA ENGINEERING, PSC

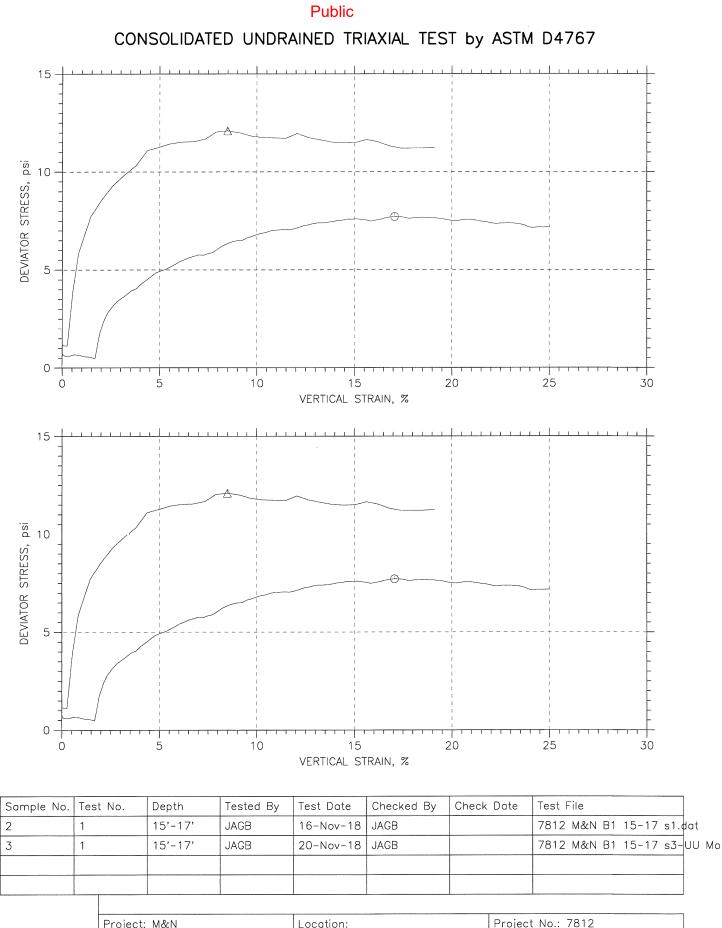
Carlos R. Sierra Del Llano, MSCE, PE Geotechnical Engineering







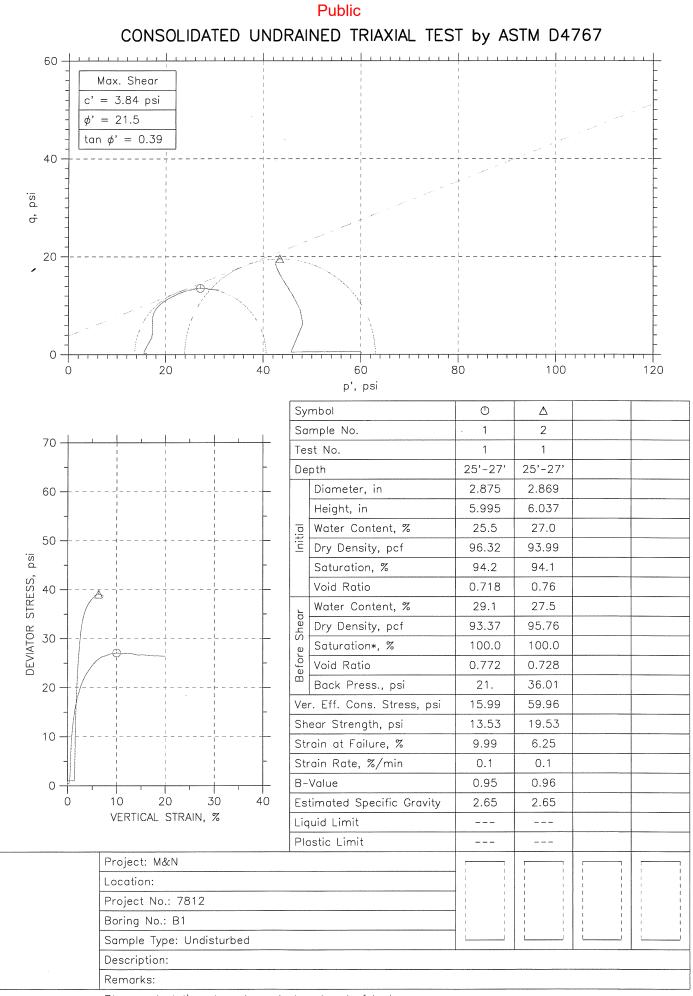

Mon, 04-MAR-2019 09:36:05


Phase calculations based on start and end of test.

+ Saturation is set to 100% for phase calculations



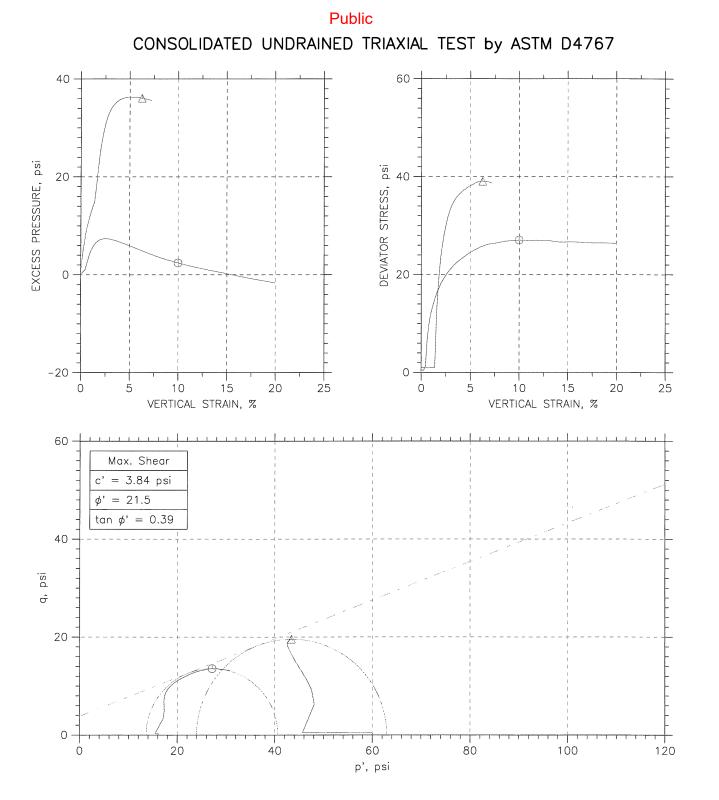
,	•
n .	DSL
μ,	231


	Sample No.	Test	No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
O	2	1		15'-17'	JAGB	16-Nov-18	JAGB		7812 M&N B1 15-17 s1.dat
Δ	3	1	·	15'-17'	JAGB	20-Nov-18	JAGB		7812 M&N B1 15-17 s3-UU Ma
			Project:	M&N		Location:		Projec	t No.: 7812
		Γ	Boring I	No.: B1		Sample Type	e: Undisturbed		
			Descript	tion: Dark Gr	ay Clay				
	Remarks:								

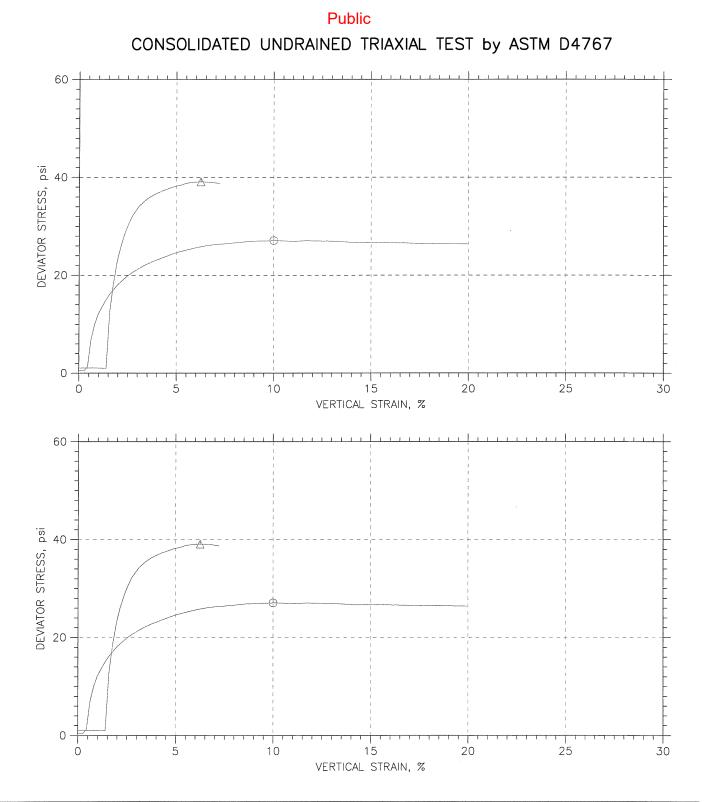


Project: M&N	Location:	Project No.: 7812				
Boring No.: B1	Sample Type: Undisturbed					
Description: Dark Gray Clay						
Remarks:						

 $\bigcirc$ 


 $\triangle$ 




Mon, 04-MAR-2019 09:11:27

Phase calculations based on start and end of test.

+ Saturation is not to 100% for phase calculations



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Dat	te Test File
0	1	1	25'-27'	JAGB	12-Nov-18	JAGB		7812 M&N B1 25-27 s1.do
Δ	2	1	25'-27'	JAGB	13-Nov-18	JAGB		7812 M&N B1 25-27 s2.da
		Project	: M&N		Location:		Pro	oject No.: 7812
		Boring	No.: B1		Samplė Type	e: Undisturbed		
		Descrip	tion:					
		Remark	s:					



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File		
0	1	1	25'-27'	JAGB	12-Nov-18	JAGB		7812 M&N B1 25-27 s1.dat		
Δ	2	1	25'-27'	JAGB	13-Nov-18	JAGB		7812 M&N B1 25-27 s2.dat		
		•								
		Project	: M&N		Location:ProjSample Type: Undisturbed			vject No.: 7812		
		Boring	No.: B1							
		Descrip	Description:							
		Remar	Remarks:							



# Appendix D

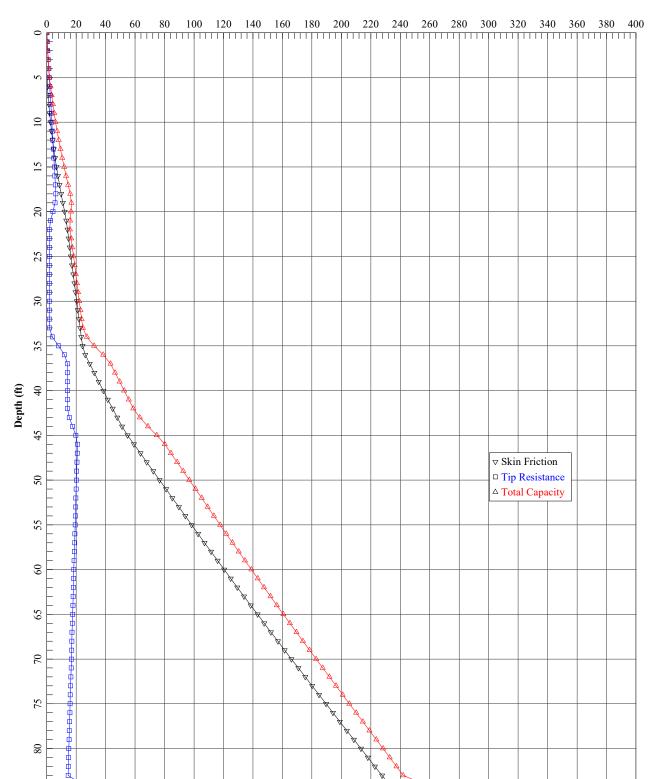
Axial and Lateral Capacity Analysis of Deep Foundations; and Liquefaction Analysis Report



# NFE Microfuel Handling Facility- Pile Capacity Analysis

#### Axial Pile Capacity Analysis Summary:

		Static Condition FS=2		FS reduction wi	Liquefaction with FS=2		
Pile Type	Depth (ft)	Allowable Axial Compression (tons)	Allowable Axial Tension (tons)	Ultimate Axial Compression with liquefaction (tons)	FS compared to allowable compression load static case	Allowable Axial Compression (tons)	Allowable Axial Tension (tons)
12 inch diameter precast concrete pile	90	75	45	120	1.60	60	33
14 inch diameter precast concrete pile	90	85	50	138	1.62	69	36
HP 14 x 117	90	105	68	170	1.62	85	50
18 inch Pipe Pile; t=0.5"	90	120	68	195	1.63	97.5	48
24 inch Pipe Pile; t=0.5"	70	105	60	190	1.81	95	55


#### Lateral Loading Analysis Parameters (Lpile): STATIC CONDITIONS + WIND LOADS

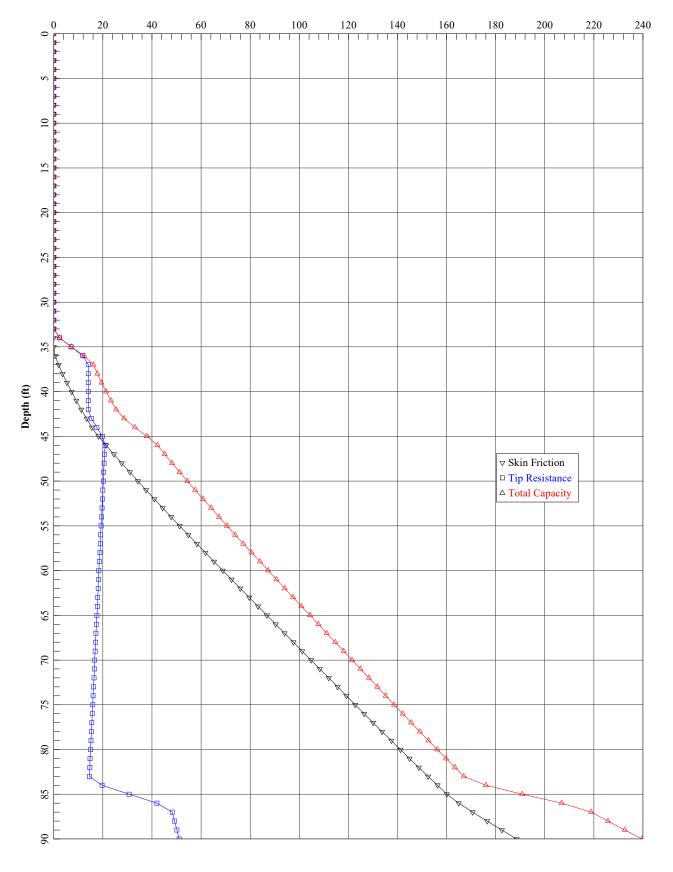
Soils Stratum	Lpile Model P-Y Curve	Depth below pile head to top of layer(ft)	Depth below pile head to bottom of layer(ft)	Effective Unit Weight (pcf)	Cohesion/Su (psf)	Angle of Internal Friction	k and strain factor
Sons Stratum				Lifective offic weight (pcr)		Friction	
Loose Sand (Hyd. Fill)	API Sand (Oneill)	0	15	38		28	default
Soft Clayey Silt/Silty Clay	Soft Clay (Matlock)	15	30	33	150		default
Stiff Silty Clay	Stiff Clay with Free Water	30	60	53	1500-3000		default

#### Lateral Loading Analysis Parameters (Lpile): SEISMIC LIQUEFACTION

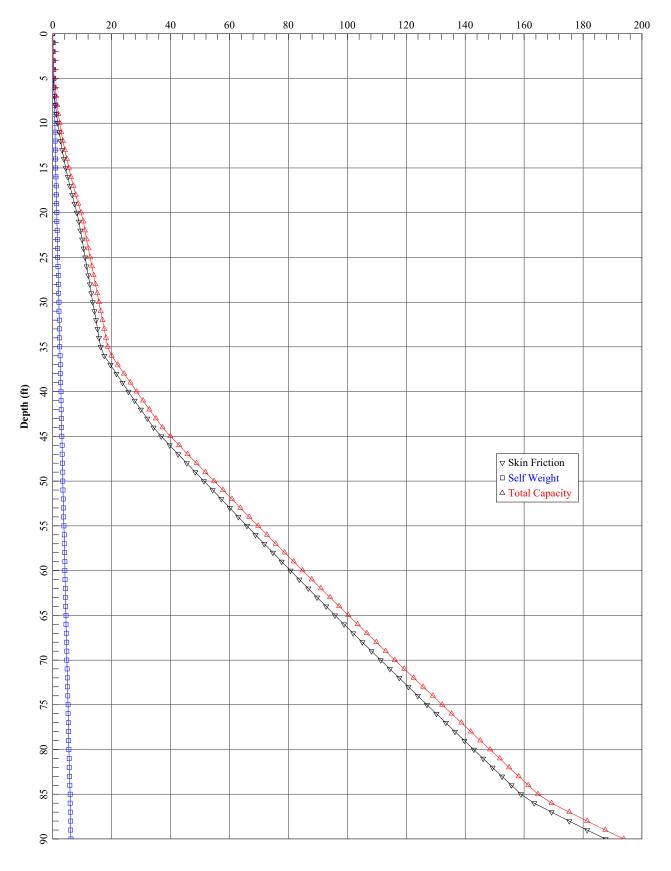
		Depth below pile head to	• •				
Soils Stratum	Lpile Model P-Y Curve	top of layer(ft)	bottom of layer(ft)	Effective Unit Weight (pcf)	Cohesion;Su (psf)	SPT Blow Count input	k and strain factor
	Hybrid Model Liquefied						
Loose Sand (Liquefaction)	Sand	0	30	38	2	2	default
Stiff Silty Clay	Stiff Clay with Free Water	30	60	53	1500-3000		default

Date: 11-9-18 by Carlos R. Sierra, MSCE, PE

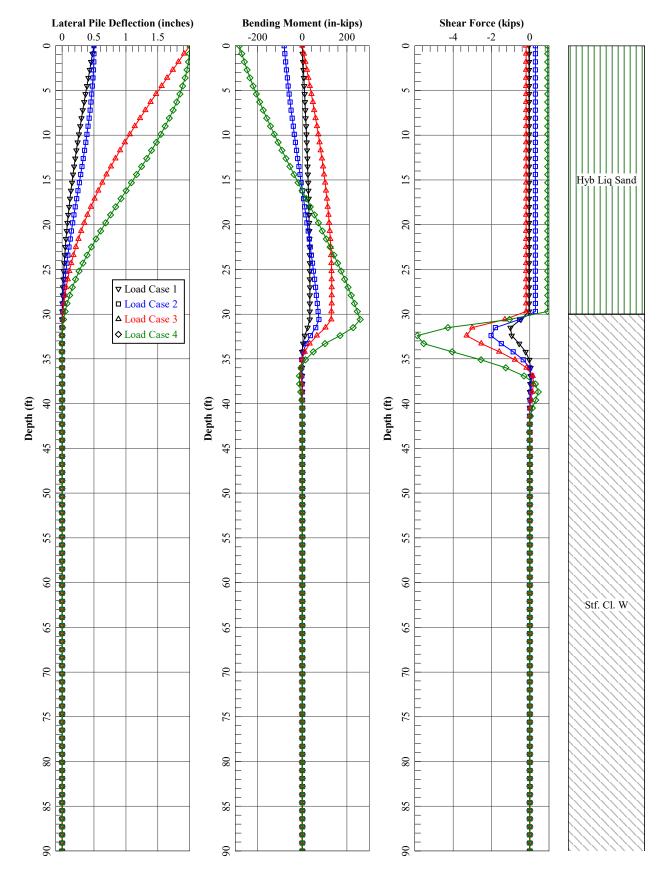



A

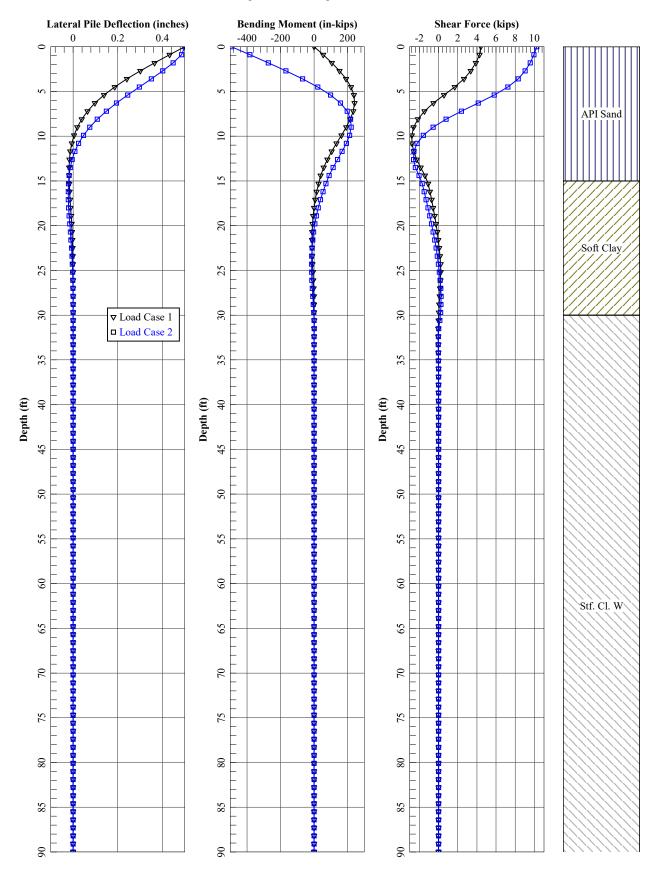
85


90

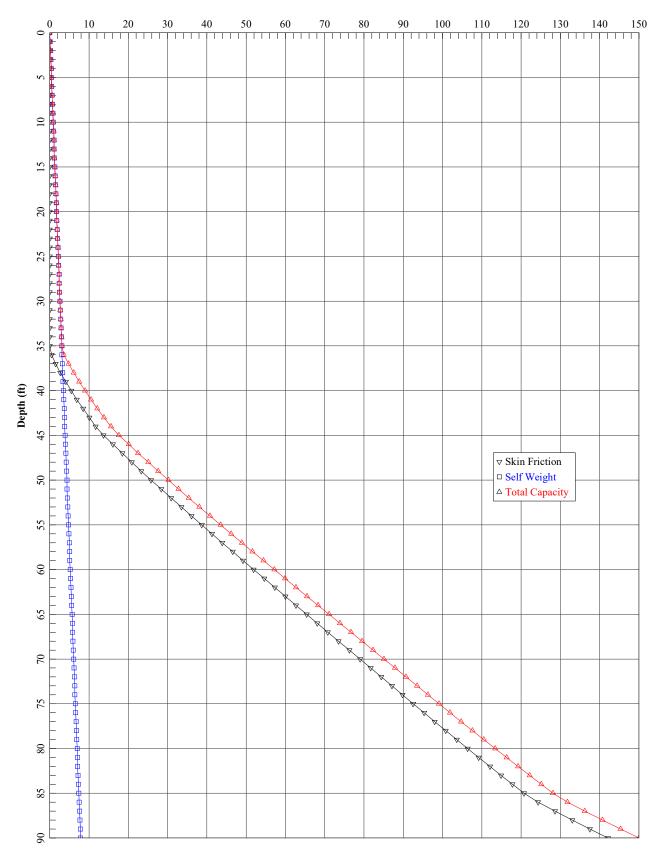
Я


#### 12 inch diameter precast concrete pile-Ultimate Capacity Axial Compression Axial Capacity (kips)

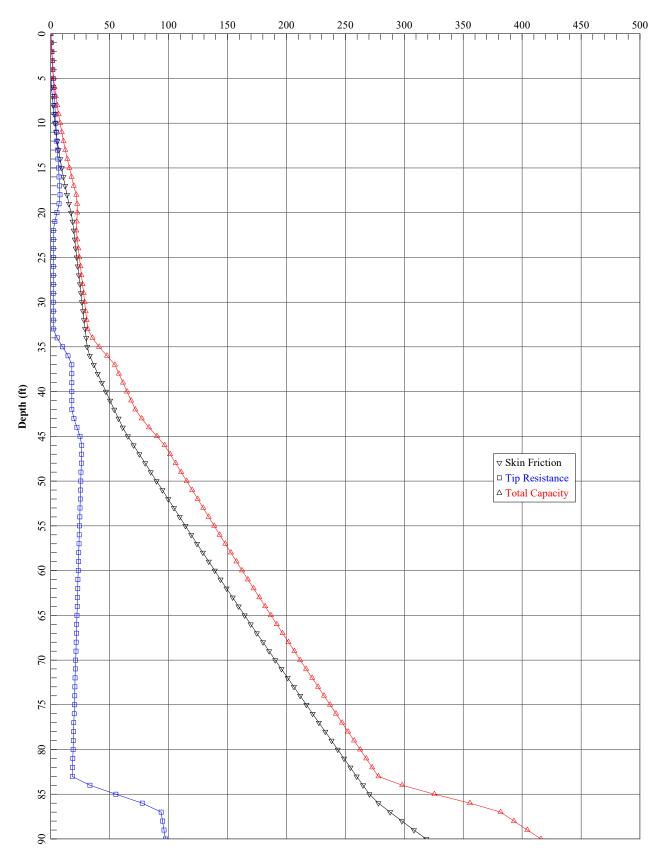



#### 12 inch diameter precast concrete pile-Ultimate Capacity Axial Compression Axial Capacity (kips)

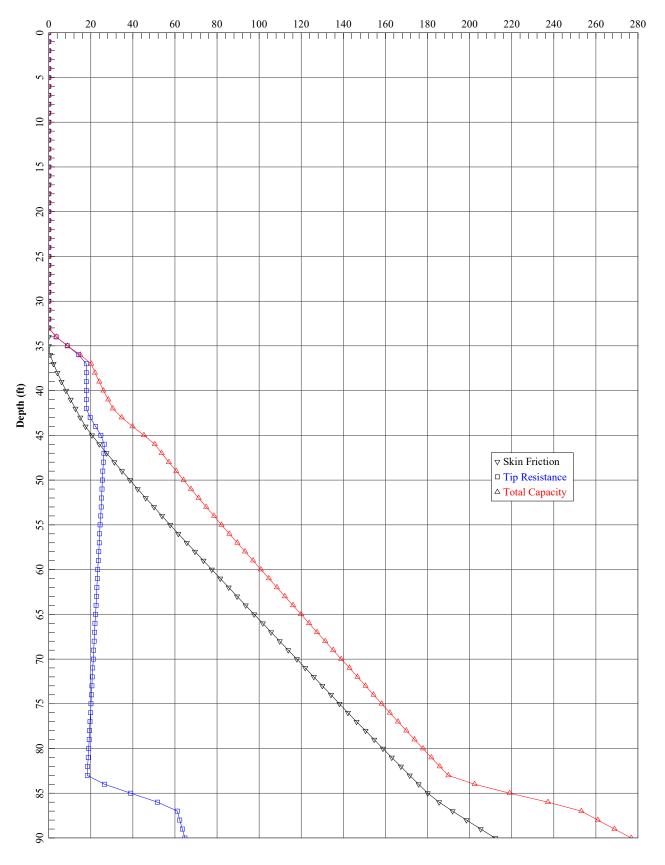



#### 12 inch diameter precast concrete pile-Ultimate Capacity Axial Tension Axial Capacity (kips)

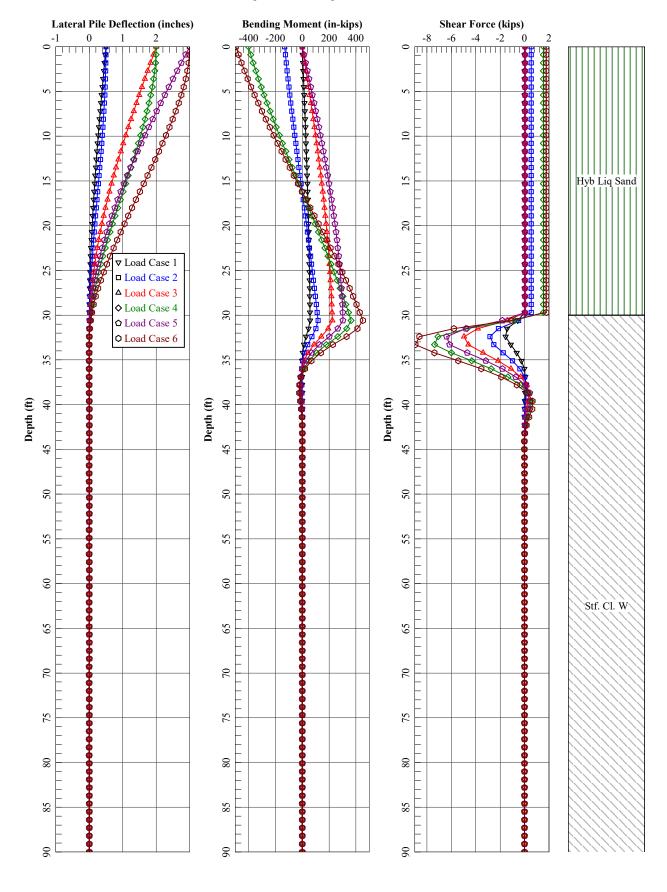



#### 12 inch precast concrete pile B-2: LIQUEFACTION



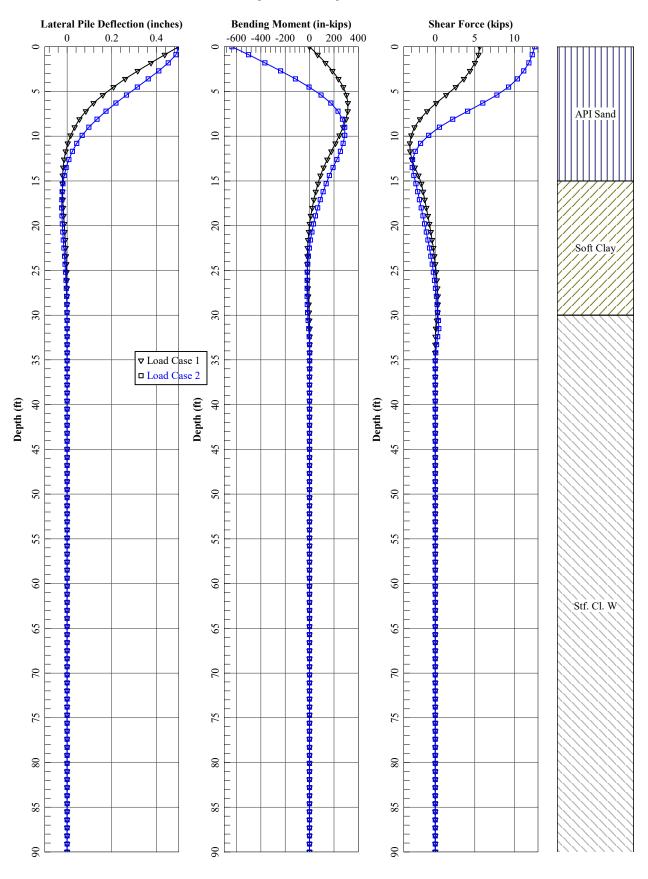

#### 12 inch precast concrete pile B-2: Static Condition

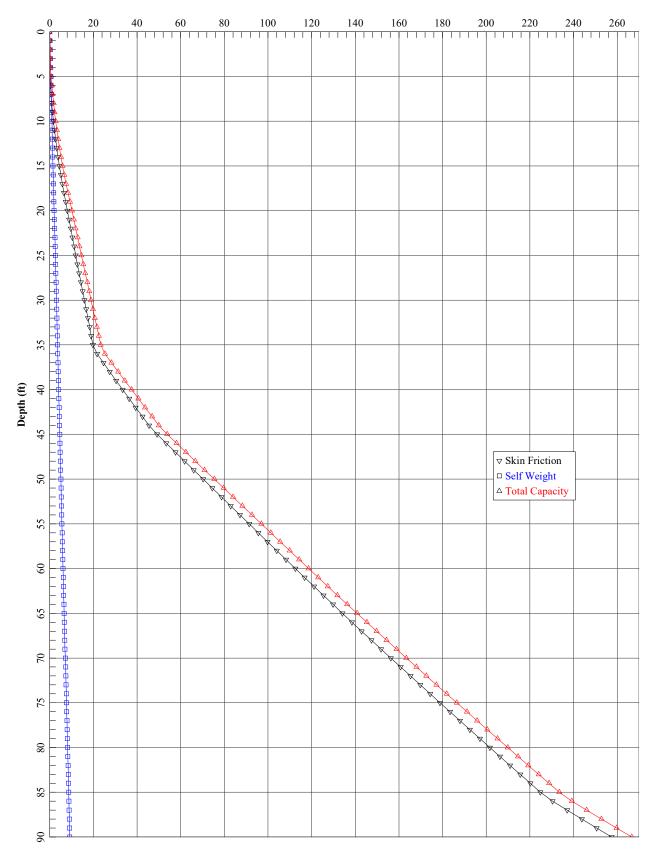



#### 14 inch diameter precast concrete pile-Ultimate Capacity Axial Tension with LIQUEFACTION Axial Capacity (kips)

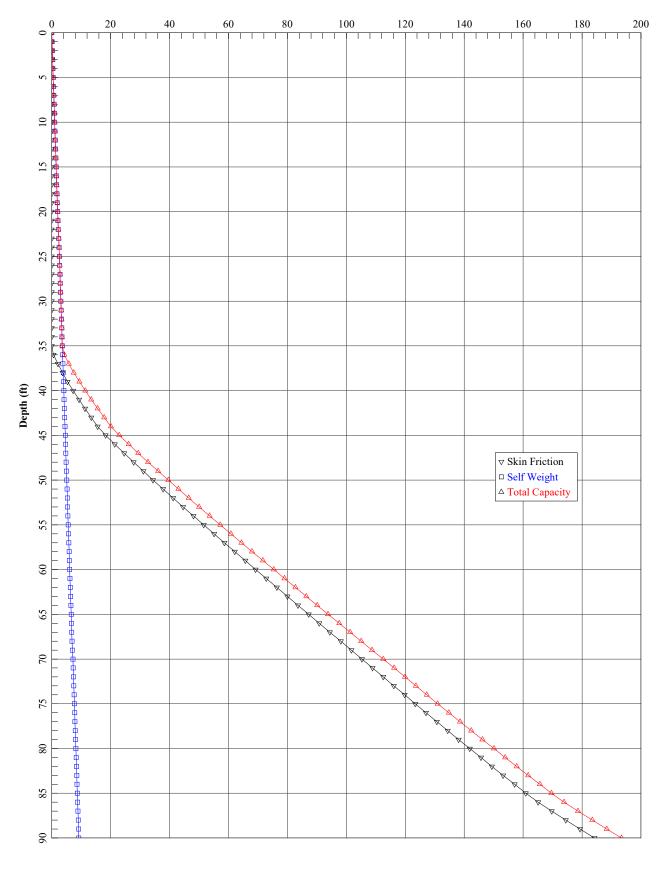


#### 14 inch diameter precast concrete pile-Ultimate Capacity Axial Compression Axial Capacity (kips)

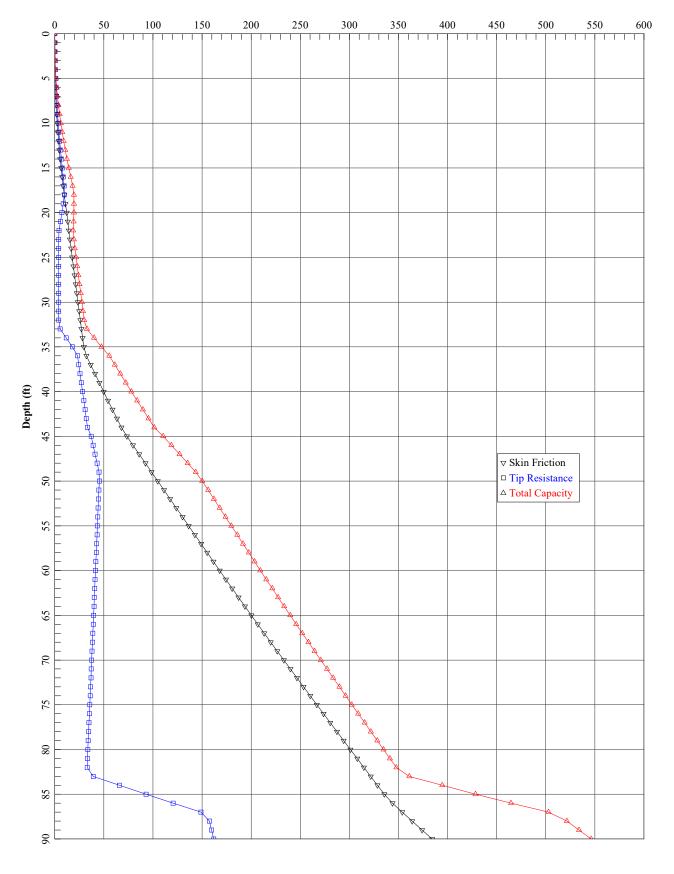




## 14 inch diameter precast concrete pile-Ultimate Capacity Axial Compression with LIQUEFACTION Axial Capacity (kips)

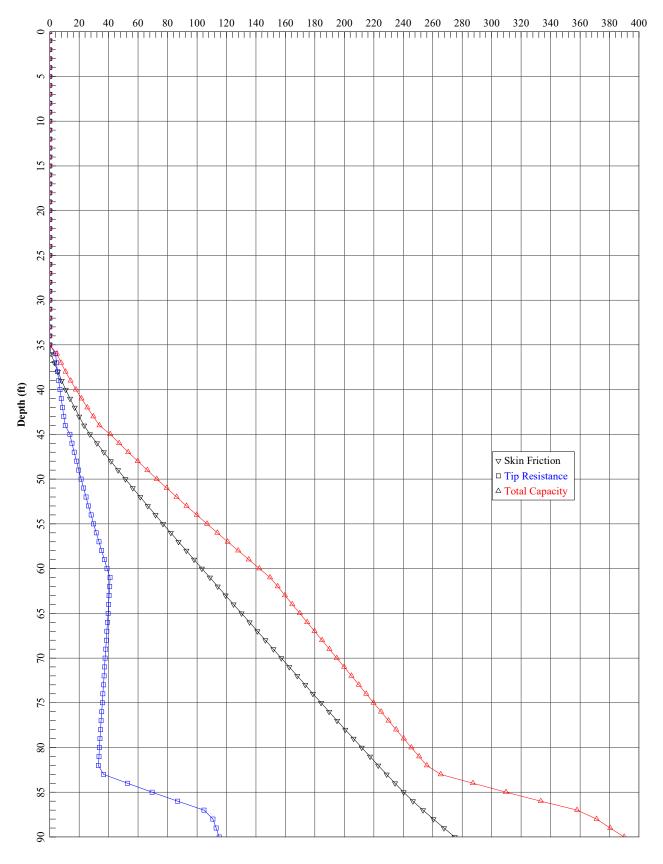



#### 13.5 inch precast concrete pile B-2: LIQUEFACTION

## 14 inch precast concrete pile: Non Factored

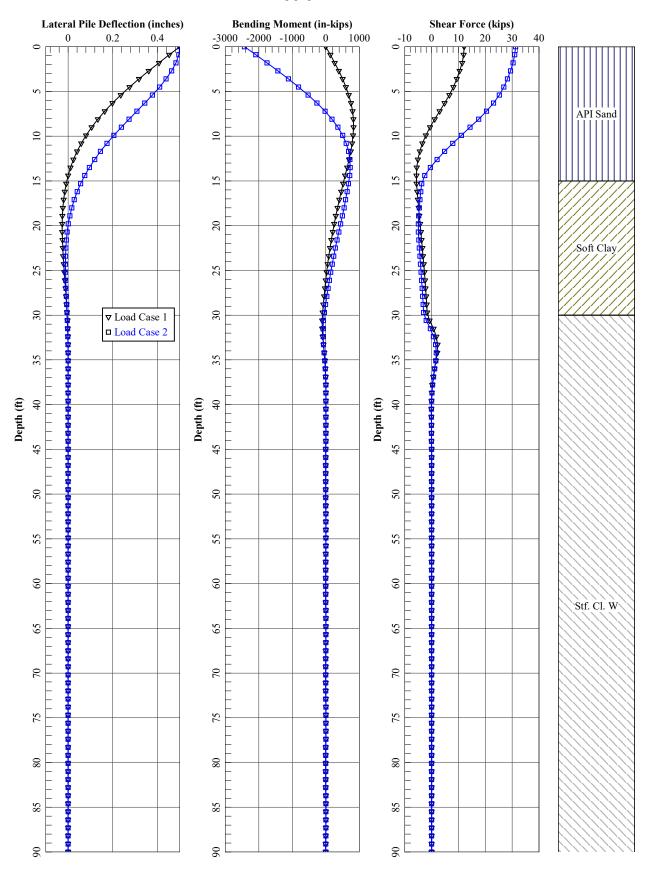






## 18 inch pile t=0.5" pile-Ultimate Capacity Axial Tension Axial Capacity (kips)



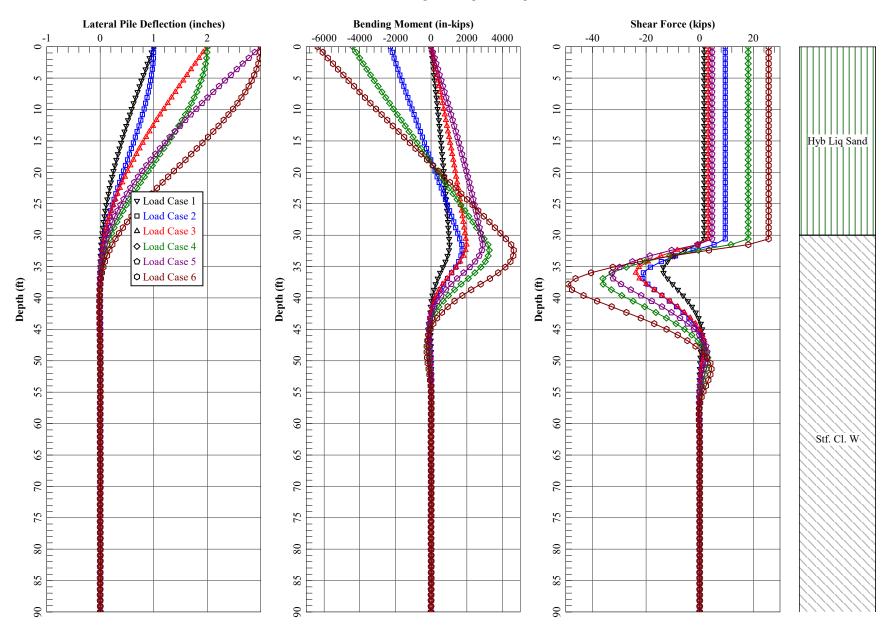
## 18 inch pile t=0.5" pile-Ultimate Capacity Axial Tension Liquefaction Axial Capacity (kips)

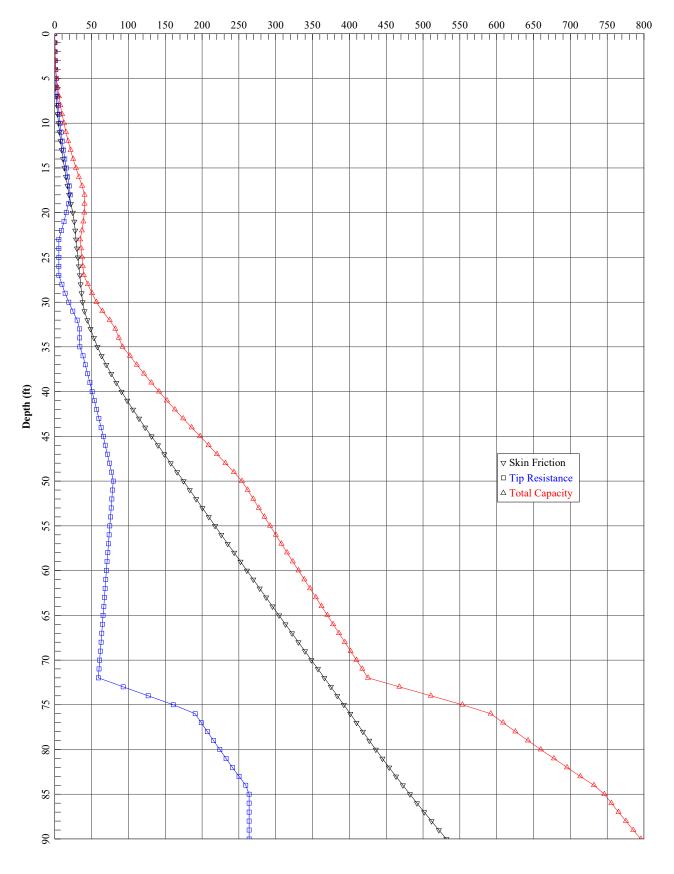



## 18 inch pile t=0.5" pile-Ultimate Capacity Axial Compression Axial Capacity (kips)



#### 18 inch pile t=0.5" pile-Ultimate Capacity Axial Compression Liquefaction Axial Capacity (kips)

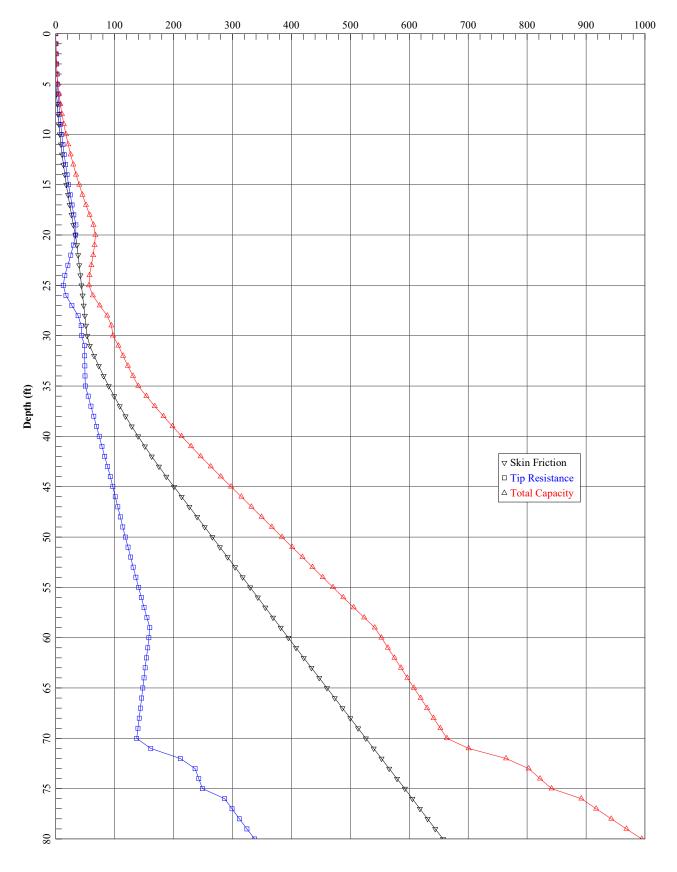

## 18 inch pipe pile : Non Factored



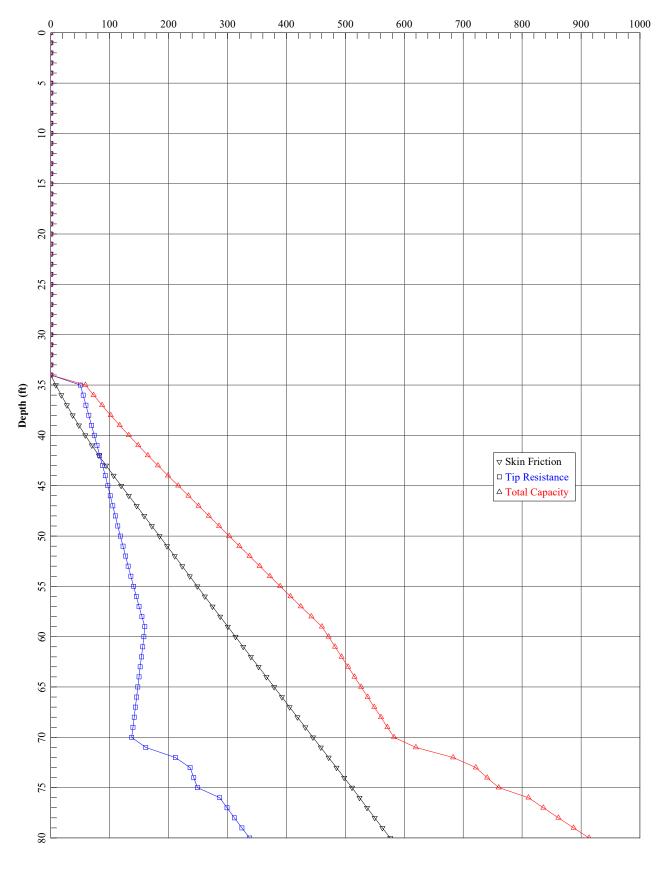

#### Lateral Pile Deflection (inches) Bending Moment (in-kips) Shear Force (kips) -30 -20 -10 -4000 -2000 -1 $\square$ ŧ Ś Ś Ś Hyb Liq Sand ▼ Load Case 1 □ Load Case 2 △ Load Case 3 ♦ Load Case 4 ✿ Load Case 5 O Load Case 6 Depth (ft) Depth (ft) Depth (ft) Stf. Cl. W

## 18 inch pipe pile; t=0.5 B-2: LIQUEFACTION

#### 24 inch diameter 15 deg battered pile with liquefaction

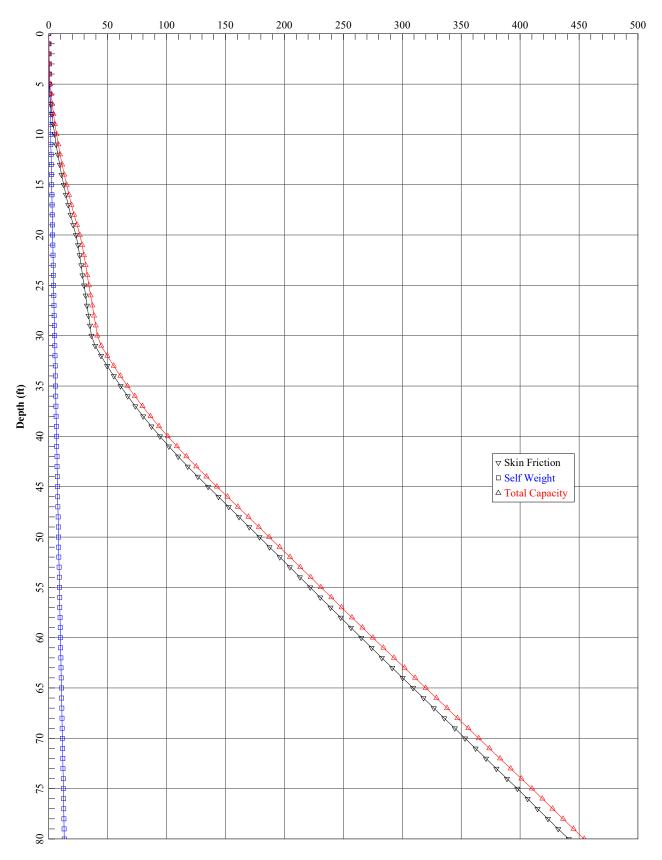


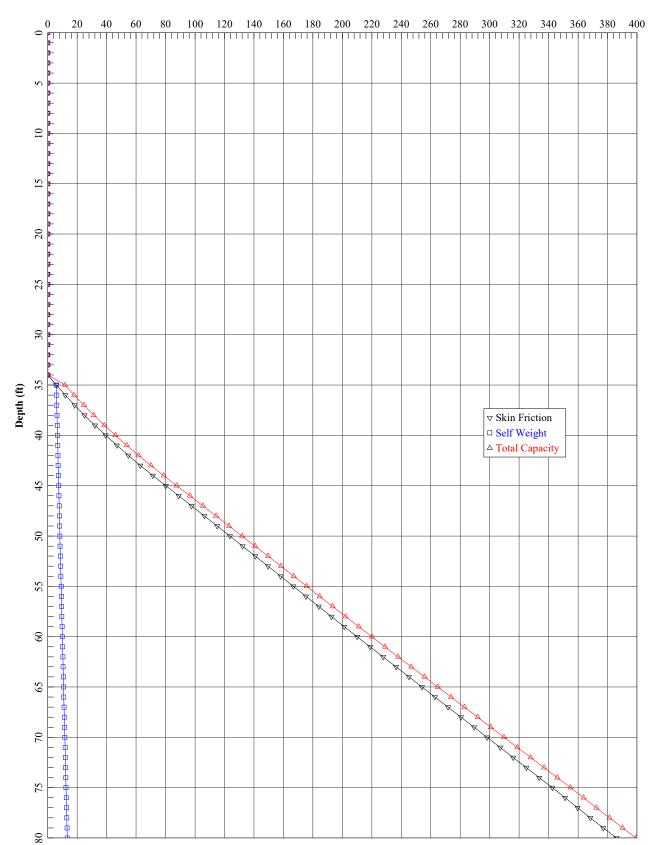




#### 24 inch diameter, t=0.5 Ultimate Axial Compression- Static Conditions Axial Capacity (kips)

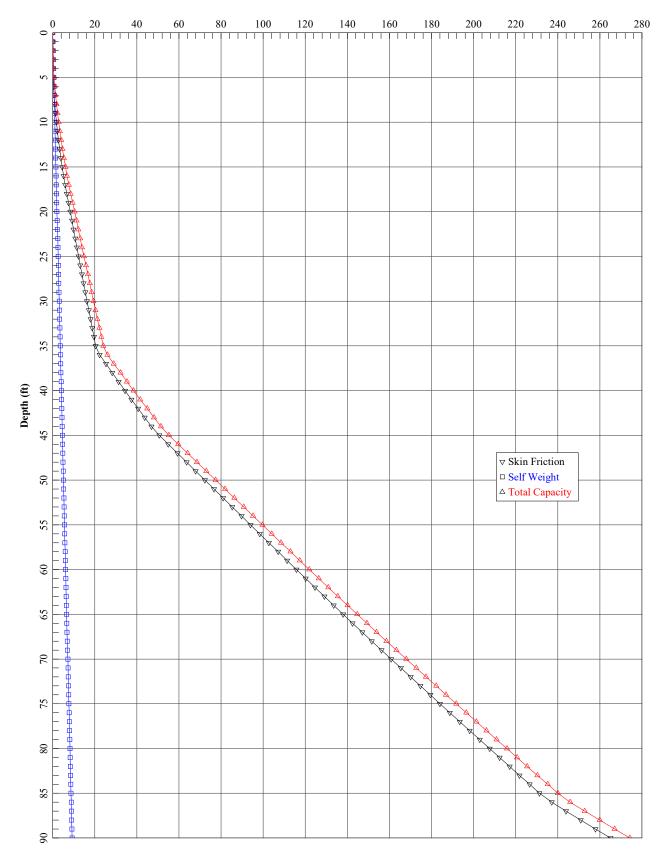


#### 24 inch diameter, t=0.5 Ultimate Axial Tension- Static Conditions Axial Capacity (kips)

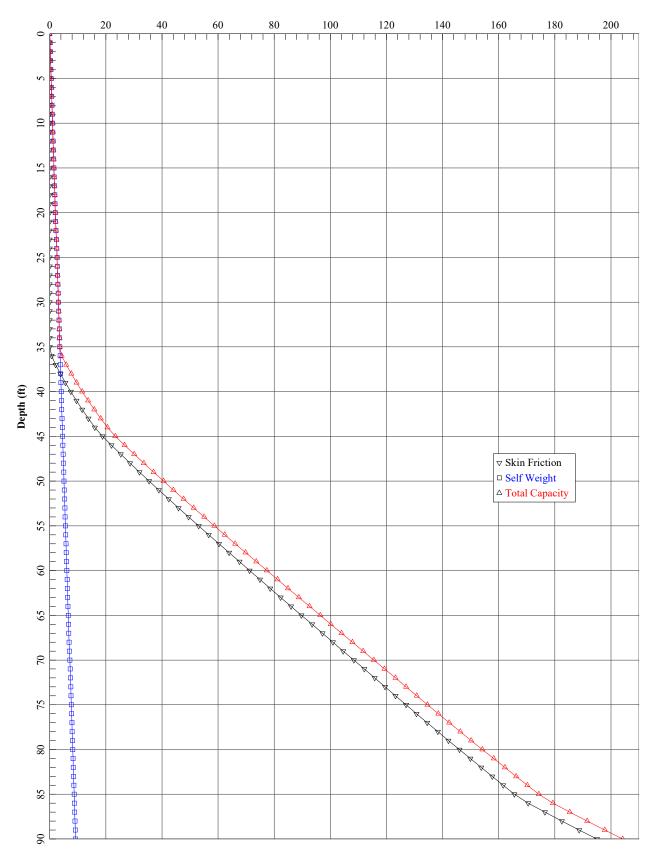




## 36 inch diameter Ultimate Compression Axial Capacity (kips)

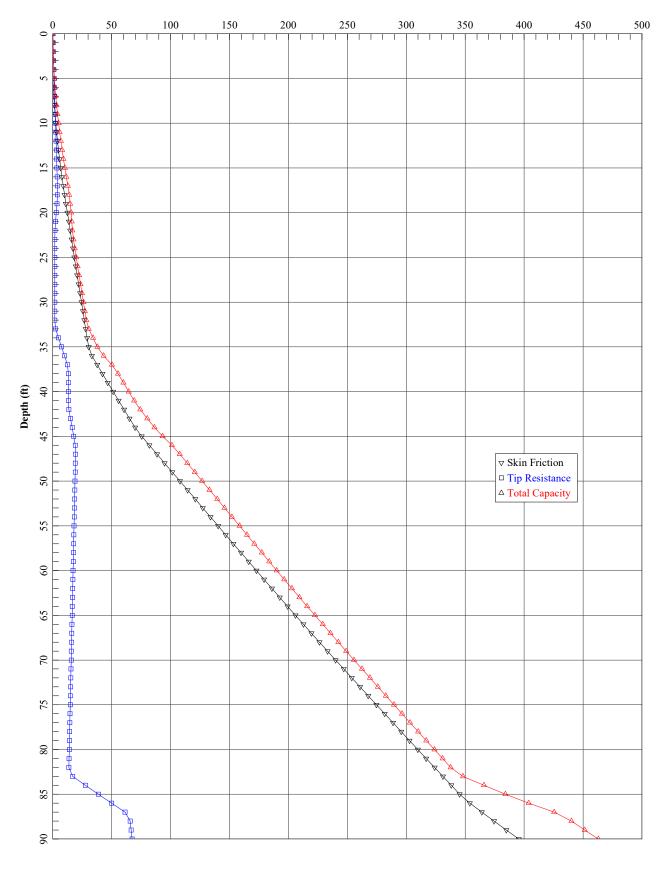



## 36 inch diameter Ultimate Compression-Liquefaction Axial Capacity (kips)

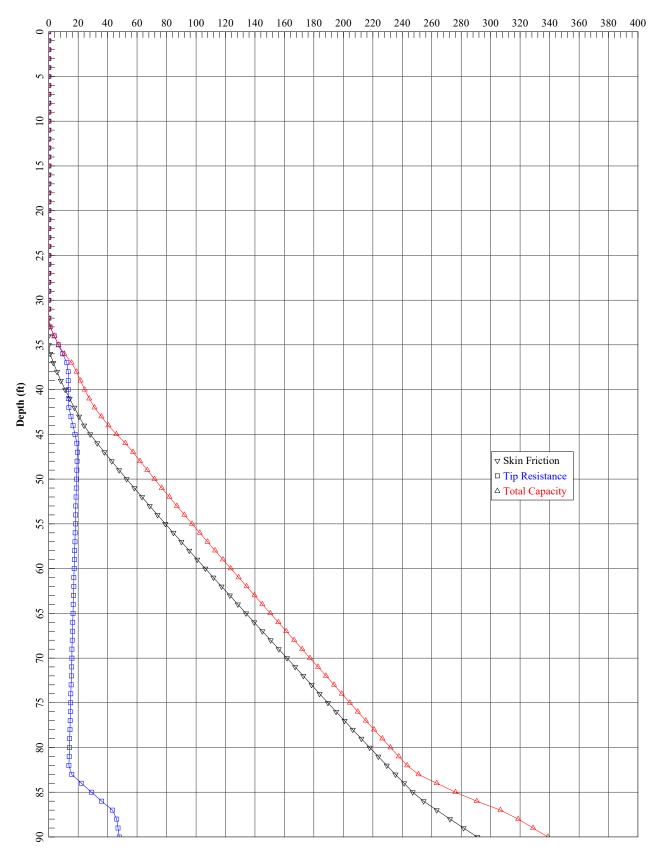
## 36 inch diameter Ultimate Tension Axial Capacity (kips)





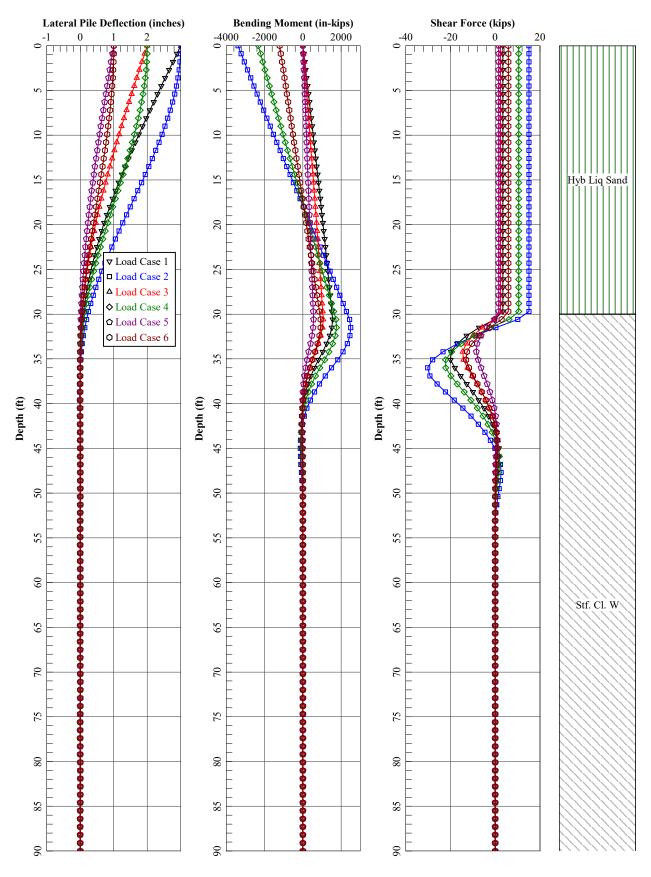


#### 36 inch diameter pipe pile, t=0.5 inches; Ultimate Axial Tension-Liquefaction Axial Capacity (kips)

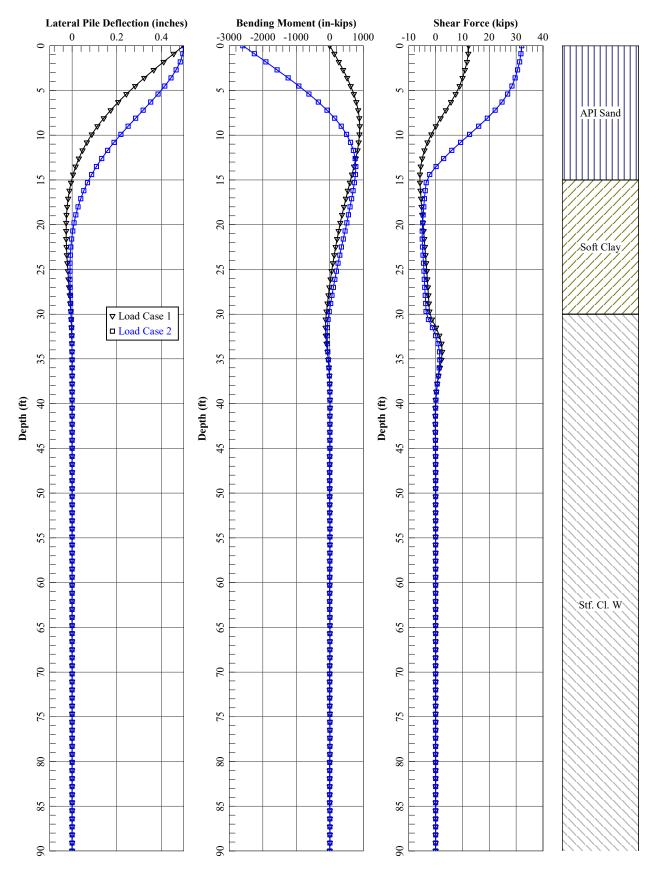



#### H14 x 117 pile-Ultimate Capacity Axial Tension Axial Capacity (kips)

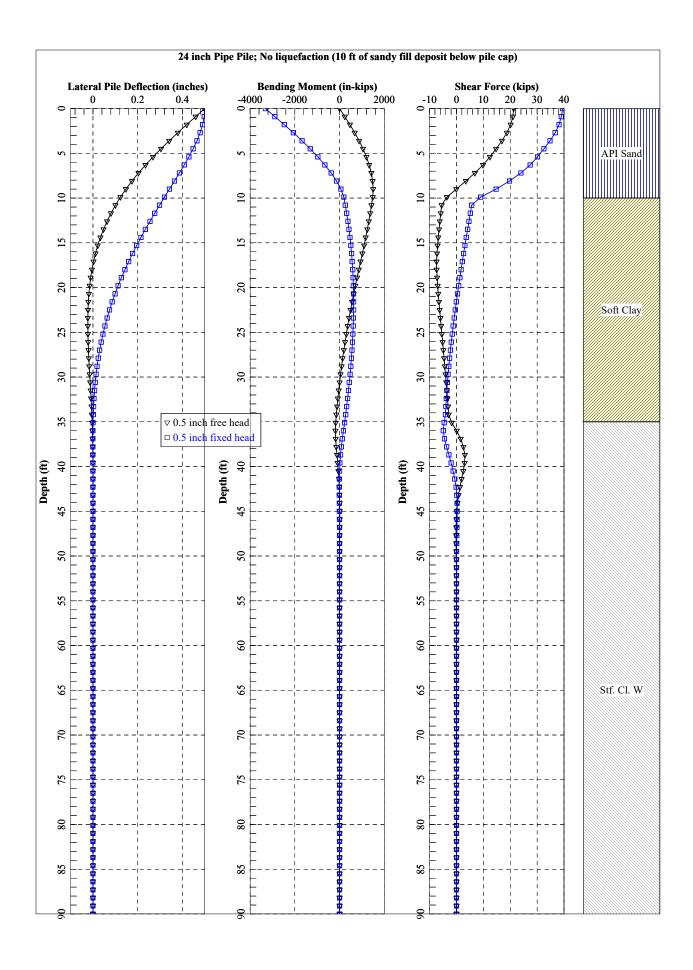


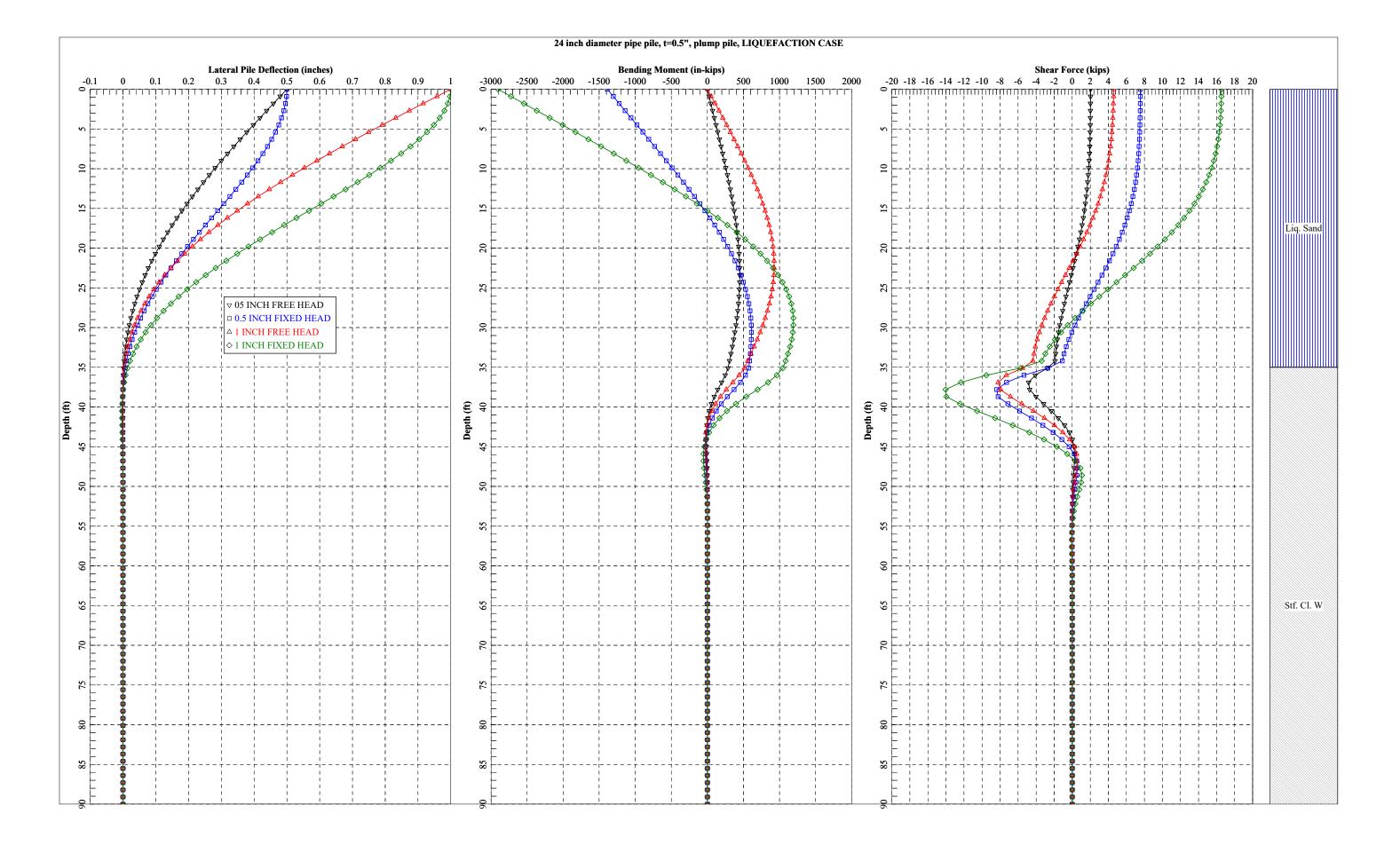
## H14 x 117 pile-Ultimate Capacity Axial Tension with Liquefaction Axial Capacity (kips)

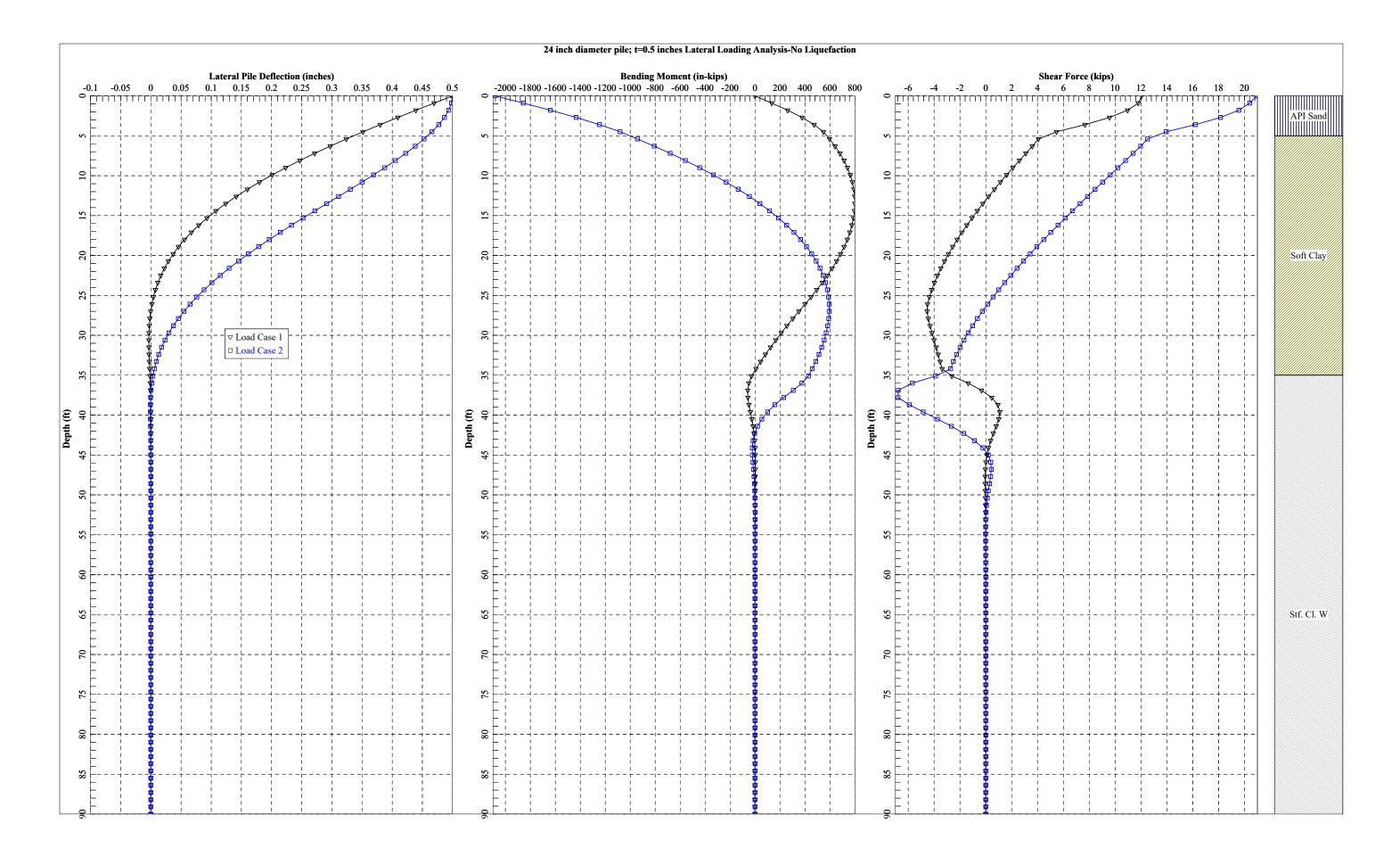


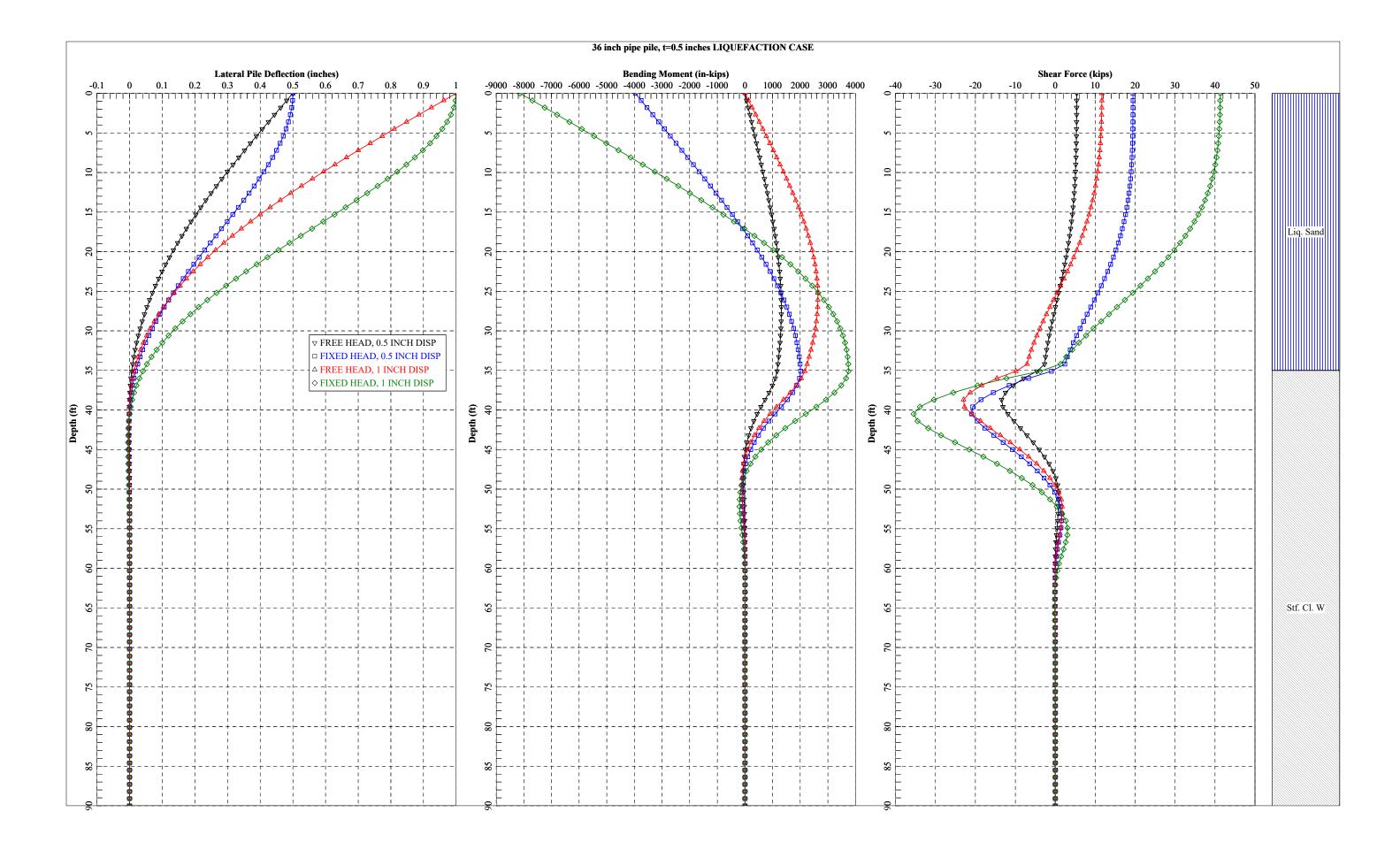


## H14 x 117 pile-Ultimate Capacity Axial Compression Axial Capacity (kips)

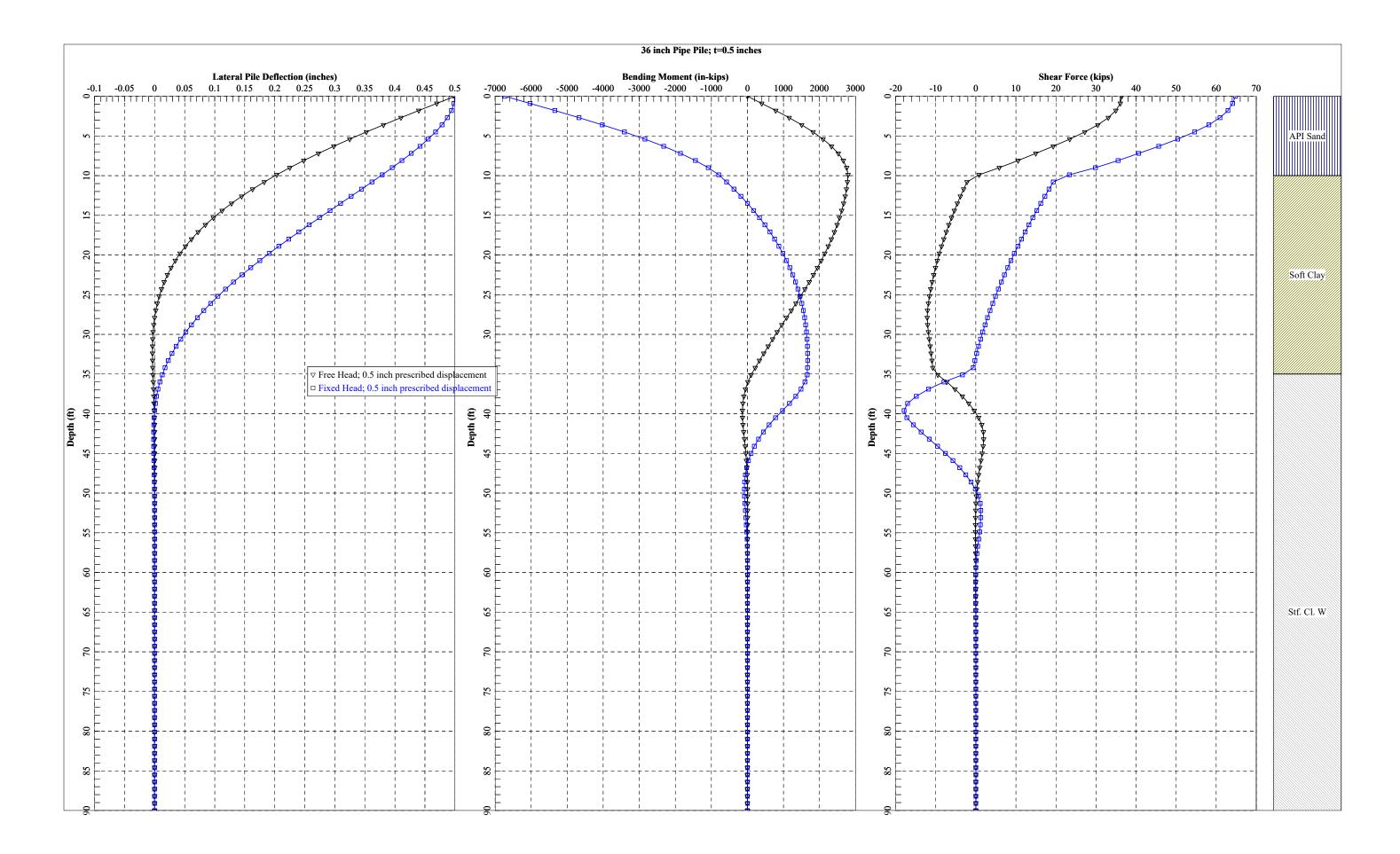



#### H14 x 117 pile-Ultimate Capacity Axial Compression with Liquefaction Axial Capacity (kips)


#### H14 x 117 B-2: LIQUEFACTION





## H14 X 117 pile LIQUEFACTION : Non Factored













## SPT BASED LIQUEFACTION ANALYSIS REPORT

## Project title : NFE-V-08 Puerto Rico

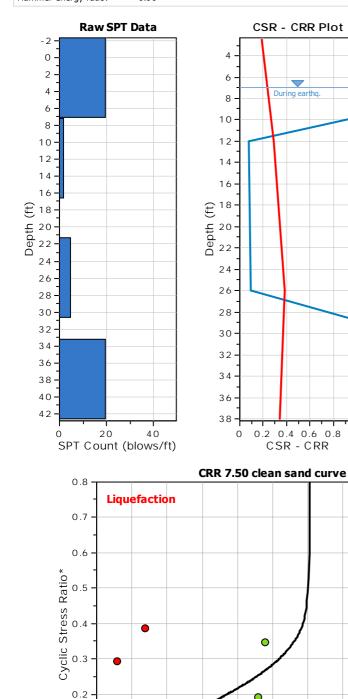
#### Location : San Juan, PR

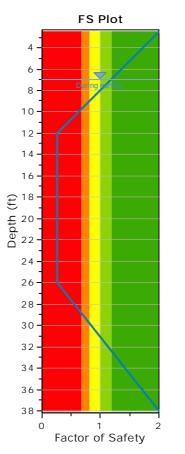
#### :: Input parameters and analysis properties ::

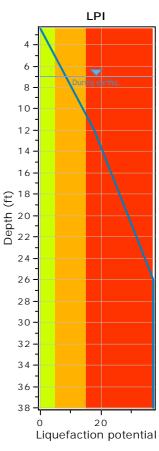
Analysis method:
Fines correction method:
Sampling method:
Borehole diameter:
Rod length:
Hammer energy ratio:

Boulanger & Idriss, 2014
Boulanger & Idriss, 2014
Standard Sampler
65mm to 115mm
3.28 ft
0.90

G.W.T. (in-situ):	0.00 ft
G.W.T. (earthq.):	7.00 ft
Earthquake magnitude M _w :	7.00 ft
Peak ground acceleration:	0.36 g
Eq. external load:	0.00 tsf


1


**No Liquefaction** 


45

50

40







SPT Name: Boring no.3

#### F.S. color scheme

- Almost certain it will liquefy
- Very likely to liquefy
  - Liquefaction and no liq. are equally likely
- Unlike to liquefy
- Almost certain it will not liquefy

#### LPI color scheme

- Very high risk
- High risk
- Low risk

10

. 15

20

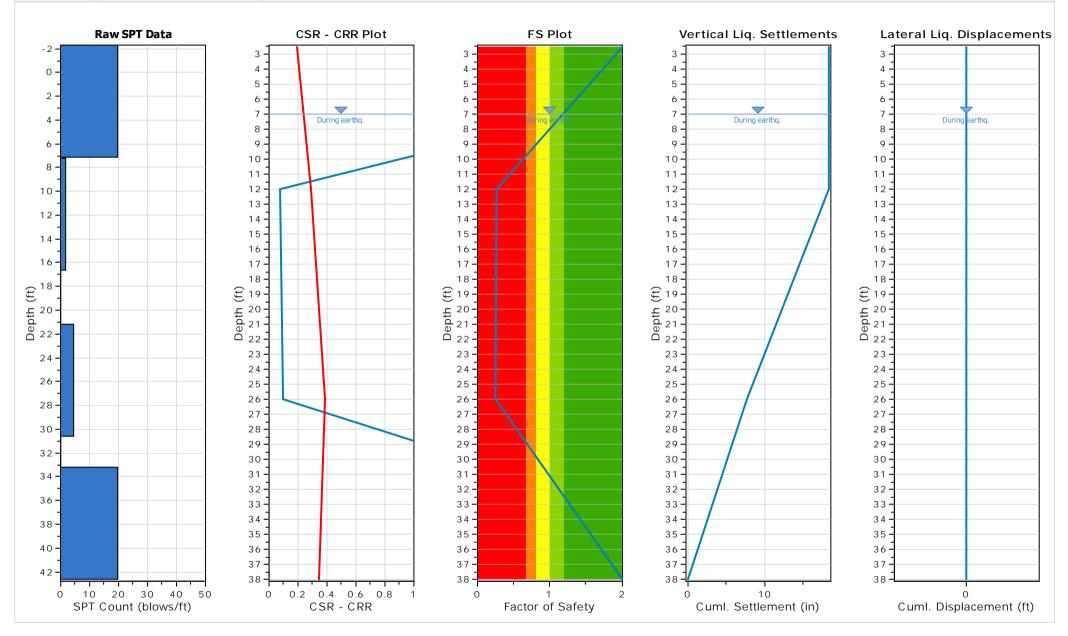
5

0.1

0.0

0

0


25

Corrected Blow Count N1(60),cs

30

35

## :: Overall Liquefaction Assessment Analysis Plots ::



LiqSVs 1.2.1.1 - SPT & Vs Liquefaction Assessment Software Project File:

## :: Field input data ::

:: Field III	iput data ::				
Test Depth (ft)	SPT Field Value (blows)	Fines Content (%)	Unit Weight (pcf)	Infl. Thickness (ft)	Can Liquefy
2.50	20	5.00	110.00	5.00	Yes
12.00	2	5.00	85.00	14.00	Yes
26.00	5	5.00	95.00	14.00	Yes
38.00	20	15.00	120.00	10.00	No

#### Abbreviations

Depth:Depth at which test was performed (ft)SPT Field Value:Number of blows per footFines Content:Fines content at test depth (%)Unit Weight:Unit weight at test depth (pcf)Infl. Thickness:Thickness of the soil layer to be considered in settlements analysis (ft)Can Liquefy:User defined switch for excluding/including test depth from the analysis procedure

#### :: Cyclic Resistance Ratio (CRR) calculation data ::

Depth (ft)	SPT Field Value	Unit Weight (pcf)	σ _v (tsf)	u。 (tsf)	σ' _{vo} (tsf)	m	C _N	CE	Св	C _R	Cs	(N1)60	FC (%)	Δ(N ₁ ) ₆₀	(N ₁ ) _{60cs}	CRR _{7.5}
2.50	20	110.00	0.14	0.08	0.06	0.42	1.70	0.90	1.00	0.75	1.00	23	5.00	0.00	23	4.000
12.00	2	85.00	0.54	0.37	0.17	0.66	1.70	0.90	1.00	0.85	1.00	3	5.00	0.00	3	0.075
26.00	5	95.00	1.21	0.81	0.39	0.58	1.70	0.90	1.00	0.95	1.00	7	5.00	0.00	7	0.098
38.00	20	120.00	1.93	1.19	0.74	0.43	1.17	0.90	1.00	1.00	1.00	21	15.00	3.26	24	4.000

#### Abbreviations

- $\sigma_v$ : Total stress during SPT test (tsf)
- u_o: Water pore pressure during SPT test (tsf)
- $\sigma'_{vo}$ : Effective overburden pressure during SPT test (tsf)
- m: Stress exponent normalization factor
- $C_N$ : Overburden corretion factor
- C_E: Energy correction factor
- C_B: Borehole diameter correction factor
- C_R: Rod length correction factor
- $\begin{array}{ll} N_{1(60)} \text{:} & \text{Corrected $N_{SPT}$ to a 60\% energy ratio} \\ \Delta(N_1)_{60} & \text{Equivalent clean sand adjustment} \end{array}$
- $N_{1(60)cs}$ : Corected  $N_{1(60)}$  value for fines content
- $CRR_{7.5}$ : Cyclic resistance ratio for M=7.5

#### :: Cyclic Stress Ratio calculation (CSR fully adjusted and normalized) ::

Depth (ft)	Unit Weight (pcf)	σ _{v,eq} (tsf)	u _{o,eq} (tsf)	σ' _{vo,eq} (tsf)	r _d	a	CSR	MSF _{max}	(N1)60cs	MSF	CSR _{eq,M=7.5}	<b>K</b> sigma	CSR*	FS
2.50	110.00	0.14	0.00	0.14	1.00	1.00	0.234	1.62	23	1.11	0.211	1.10	0.192	2.000 •
12.00	85.00	0.54	0.16	0.39	0.97	1.00	0.318	1.10	3	1.02	0.312	1.07	0.292	0.258 鱼
26.00	95.00	1.21	0.59	0.61	0.90	1.00	0.414	1.14	7	1.02	0.404	1.04	0.387	0.254 🔍
38.00	120.00	1.93	0.97	0.96	0.83	1.00	0.392	1.67	24	1.12	0.351	1.02	0.345	2.000 •

#### Abbreviations

σ _{v,eq} :	Total overburden pressure at test point, during earthquake (tsf)
U _{o,eq} :	Water pressure at test point, during earthquake (tsf)
σ' _{vo,eq} :	Effective overburden pressure, during earthquake (tsf)
r _d :	Nonlinear shear mass factor
a:	Improvement factor due to stone columns
CSR :	Cyclic Stress Ratio
MSF :	Magnitude Scaling Factor
$CSR_{eq,M=7.5}$ :	CSR adjusted for M=7.5
K _{sigma} :	Effective overburden stress factor
CSR*:	CSR fully adjusted
FS:	Calculated factor of safety against soil liquefaction

:: Liquef	action p	otential	accordir	ng to Iwasaki	i ::
Depth (ft)	FS	F	wz	Thickness (ft)	IL
2.50	2.000	0.00	9.62	9.50	0.00
12.00	0.258	0.74	8.17	9.50	17.57
26.00	0.254	0.75	6.04	14.00	19.22
38.00	2.000	0.00	4.21	12.00	0.00

## Overall potential IL: 36.79

 $I_L = 0.00$  - No liquefaction

 $I_L$  between 0.00 and 5 - Liquefaction not probable  $I_L$  between 5 and 15 - Liquefaction probable

 $I_L > 15$  - Liquefaction certain

:: Vertic	al settle	ments o	estimati	on for d	ry sands	::							
Depth (ft)	(N1)60	Tav	р	G _{max} (tsf)	α	b	Y	<b>ε</b> 15	Nc	ε _{Νc} (%)	∆h (ft)	ΔS (in)	
2.50	23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.00	0.000	

Cumulative settlemetns: 0.000

#### Abbreviations

- Average cyclic shear stress Tav:
- p: Average stress
- Maximum shear modulus (tsf) G_{max}:
- a, b: Shear strain formula variables
- Average shear strain γ:

Volumetric strain after 15 cycles ε15:

- N_c: Number of cycles
- Volumetric strain for number of cycles N_c (%) ε_{Nc}:
- Δh: Thickness of soil layer (in)

ΔS: Settlement of soil layer (in)

:: Vertical & Lateral disp	I.acements estimation for saturated sands ::

Depth (ft)	(N1)60cs	Υιιm (%)	Fa	FS _{liq}	Υ _{max} (%)	e _v (%)	dz (ft)	S _{v-1D} (in)	LDI (ft)
12.00	3	100.00	0.95	0.258	100.00	6.33	14.00	10.640	0.00
26.00	7	66.51	0.95	0.254	66.51	4.52	14.00	7.594	0.00
38.00	24	0.00	0.00	2.000	0.00	0.00	10.00	0.000	0.00

#### Cumulative settlements: 18.234 0.00

#### Abbreviations

- Limiting shear strain (%) Ylim:
- F₀/N: Maximun shear strain factor
- Maximum shear strain (%) γ_{max}:
- Post liquefaction volumetric strain (%) ev∷
- S_{v-1D}: Estimated vertical settlement (in)
- LDI: Estimated lateral displacement (ft)

## References

- Ronald D. Andrus, Hossein Hayati, Nisha P. Mohanan, 2009. Correcting Liquefaction Resistance for Aged Sands Using Measured to Estimated Velocity Ratio, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 6, June 1
- Boulanger, R.W. and Idriss, I. M., 2014. CPT AND SPT BASED LIQUEFACTION TRIGGERING PROCEDURES. DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT DAVIS
- Dipl.-Ing. Heinz J. Priebe, Vibro Replacement to Prevent Earthquake Induced Liquefaction, Proceedings of the Geotechnique-Colloquium at Darmstadt, Germany, on March 19th, 1998 (also published in Ground Engineering, September 1998), Technical paper 12-57E
- Robertson, P.K. and Cabal, K.L., 2007, Guide to Cone Penetration Testing for Geotechnical Engineering. Available at no cost at http://www.geologismiki.gr/
- Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J., Liao, S., Marcuson III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R., and Stokoe, K.H., Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshop on Evaluation of Liquefaction Resistance of Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 127, October, pp 817-833
- Zhang, G., Robertson. P.K., Brachman, R., 2002, Estimating Liquefaction Induced Ground Settlements from the CPT, Canadian Geotechnical Journal, 39: pp 1168-1180
- Zhang, G., Robertson. P.K., Brachman, R., 2004, Estimating Liquefaction Induced Lateral Displacements using the SPT and CPT, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 130, No. 8, 861-871
- Pradel, D., 1998, Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 124, No. 4, 364-368
- R. Kayen, R. E. S. Moss, E. M. Thompson, R. B. Seed, K. O. Cetin, A. Der Kiureghian, Y. Tanaka, K. Tokimatsu, 2013. Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 3, March 1


Appendix S.4



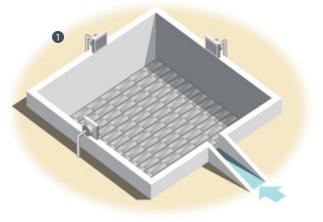


# $FOAMGLAS^{\circledast} \ PFS^{m} \ SYSTEM \\ POOL \ FIRE \ SUPPRESSANT \cdot \ GENERATION \ 2 \\$

U.S. PATENT NO. 9,925,401



## FOAMGLAS[®] PFS[™] SYSTEM GENERATION 2


## FOR POOL FIRE SUPPRESSION

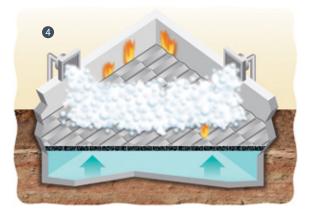
Industrial fire safety is more important now than ever before. Production demands require oil and gas facilities to run continuously without fear of costly safety issues. Many companies are also assigning a greater priority to communicating their successful safety records both internally and externally.


After widespread adoption of the Generation 1 system, the FOAMGLAS[®] PFS[™] Generation 2 pool fire suppression

system addresses requirements for extended resistance to weathering and poor climatic conditions, as well as improve the working surface to ease snow removal. This system complements safety programs by delivering a reliable, low-maintanance passive solution for the reduction of thermal radiation and flame height in contained liquid natural gas (LNG) fires. FOAMGLAS[®] PFS[™] system is easy to install and can provide immediate mitigation of the thermal flux, rate of combustion, view and overall size of an LNG pool fire.

## HOW IT WORKS.




The FOAMGLAS® PFS" system is a passive system that remains in place to assist in providing immediate and automatic control of LNG pool fires without deployment delays.



Because FOAMGLAS® PFS" system is highly buoyant, the pool fire suppressant modules rise immediately to the surface of the LNG to provide an insulating cap that can aid in reducing vaporization.



In the event of ignition, the FOAMGLAS® PFS[™] system modules quickly limit thermal radiation and flame height.



The system works in conjunction with fire fighting foams.





## **EASY TO INSTALL**

FOAMGLAS[®] PFS[™] system modules are constructed of a cladded insulation core which are bridged together to uniformly cover an impounding sump or other containment area. These units are easily installed on site and do not require any specialized skills or equipment to install or maintain. The product is packed on standard pallets so no special shipping or handling is required.

## IMMEDIATE CONTROL AND PROVEN RESULTS WITH CELLULAR GLASS SYSTEMS

Vapor and Fire Control Testing commissioned by TOTAL and conducted under the supervision of Resource Protection International at the Centro Jovellanos concluded that the the FOAMGLAS[®] PFS[™] system was effective in reducing radiant heat flux and controlling fire from LNG and LPG pool fires.

In scale tests conducted by Shell Research Ltd, a depth of 200 mm (8 inches) of FOAMGLAS[®] PFS[®] system cubes, assisted in providing an immediate and automatic control of the fire at a level comparable with that provided of 1-2 meters (3.3-6.6 ft.) of high-expansion foam.

Results of large scale experiments performed at the Emergency Services Training Institute of Texas A&M University have shown that the view factor of an LNG pool fire suppressed by FOAMGLAS® PFS" system is comparatively lower than that of high expansion foam, providing real protection from thermal radiation for exposed equipment or personnel. With maximum flame height significantly reduced at a steady state, the thermal radiation is limited to the visible fire within the much lower temperature range of 200°C to 500°C (392°F to 932°F).

Field extinguishing trials conducted were successful in demonstrating the system's performance. These trials, performed on an LNG test pit of 100 square feet, showed that firefighters equipped with a single 20 lb. dry chemical extinguisher were able to directly approach the edge of the containment pit and extinguish the flames within seconds with only a partial charge.

Liquefied Natural Gas pool fires are considered one of the main hazards of LNG facilities. Suppression methods for potential fires are designed to reduce hazards such as radiant heat and flame height. Based on past research, high expansion foam was regarded as the primary technology in suppressing LNG pool fires. FOAMGLAS[®] PFS[™] pool fire suppression systems assist in providing immediate and automatic control of LNG pool fires. The FOAMGLAS[®] PFS[™] pool fire suppression system has been tested to show that both radiant heat and flames were significantly reduced when used as a passive system prior to a gas leak when compared to traditional foam suppression systems used as the only method to attenuate pool fires. In order to help protect a facility from fire and smoke, the use of cellular glass makes sound technical sense.

## **UNIQUE PHYSICAL PROPERTIES**

The FOAMGLAS® PFS" system contains specially formulated low-density cellular glass that has a combination of physical properties not found in traditional fire suppressant foams. Made of cellular glass, the material is both extremely buoyant and nonflammable. The pool fire suppressant module system is non-corrosive and resistant to water and vermin. It is also fiber-free, and has a high compressive strength. The FOAMGLAS® PFS" system works in conjunction with fire fighting foams. Damaged or post-incident waste materials can be disposed of as standard refuse, and can be compacted for reduced waste volume.



Closed-cell structure of FOAMGLAS® cellular glass insulation.

## FOAMGLAS® PFS™ SYSTEM POOL FIRE SUPPRESSANT GENERATION 2

The FOAMGLAS[®] PFS[™] Pool Fire Suppressant System Generation 2 complements safety programs by delivering a reliable, low-maintenance passive protective solution for the reduction of thermal radiation and flame height in contained liquid natural gas (LNG) fires. The FOAMGLAS[®] PFS[™] system is easy to install and can provide immediate mitigation of the thermal flux, rate of combustion, view, and overall size of an LNG pool fire.

## **BENEFITS**

- Easy to install
- Continous protection & immediate control
- Passive & reliable
- Low maintainance
- Long term resistence to weathering and poor climatic conditions
- Customized design to match the containment area
- May reduce mandated exclusion zone for your facility

## **PROJECT REFERENCES**¹:

**PORLING** YAMAL LNG NATIONAL PETROLEUM CORP - BARBADOS SINGAPORE LNG **ELENGY - FRANCE** LNG MIAMI LYSEKIL LNG **BINTULU MLNG** FERUS NATURAL GAS FUELS **APA GROUP - AUSTRALIA** SAMSUNG - KOREA TOTAL PETROCHEMICALS - FRANCE ADGAS - UAE EG LNG **BOC - AUSTRALIA ISLE OF GRAIN LNG RISAVIKA LNG** CLEAN ENERGY HIGH DESERT LNG **GASREC LIQUID BIOMETHANE - UK** FREEPORT LNG YEMEN LNG PANIGAGLIA LNG

## FIRE CREDENTIALS FOR FOAMGLAS® INSULATION

Der Norske Verita Type Approval Lloyd's Register USGG Approval for Non-combustible Inspections

Material Tests: EN ISO 1182 (Class A1) ASTM E136 (noncombustible) ASTM E 84 - Flame-spread (0) Smoke Development (0)

Application Tests¹: FOAMGLAS[®] Insulation on LNG. MKOPSC. Texas A&M University.

Fire & Vapor Control Testing. Resource Protection International. Centro Jovellanos.

Extinguishing Trials at Brayton Fire Training Filed.

A Novel Method for Controlling Pool Fires. Fire Technology Journal. Shell Research Limited. Thorton Research Centre.

## **REGULATORY OVERVIEW**

- National Fire Protection Association 59A, Standard for the Production, Storage, and Handling of LNG, has contributed to the conditional withholding and final denial of regulatory approval for several LNG projects by the Federal Energy Regulatory Committee.
- Requirements for exclusion zones can impact overall site layout and design with direct impact on land acquisition and construction costs for facility owners.
- Mandated exclusion zones for LNG facilities include parameters for both vapor dispersion and thermal radiation (radiant thermal flux).
- NFPA 59A allows for the use of passive fire mitigation techniques in the calculation of radiant heat distances, subject to the approval of the agency having jurisdication.



Pittsburgh Corning, LLC One Owens Corning Pkwy Toledo, OH 43659

For web-based Sales and Technical Service inquiries, please visit www.foamglas.com

#### To contact by phone or email: Industrial & Commercial Sales

Americas +1 800 327 6126

Asia-Pacific Singapore: +65 9635 9184 China: +86 (0) 21 6101 7179 Japan: +81 3 6365 4307

**Europe, Middle East & Africa** +32 13 661 721

## **Technical Services**

Americas & Asia Pacific +1 800 327 6126 Foamglastechnical@owenscorning.com

## Europe, Middle East & Africa

+32 13 611 468 Industrytechnical@foamglas.com

Pub. No. 10023721 © 2019 Pittsburgh Corning LLC. All Rights Reserved. © 2019 Owens Corning. All Rights Reserved. FI-339 9/19. Replaces Rev. 5/17 The information contained herein is accurate and reliable to the best of our knowledge. But, because Pittsburgh Corning LLC has no control over installation workmanship, accessory materials or conditions of application, NO EXPRESSED OR IMPLIED WARRANTY OF ANY KIND, INCLUDING THOSE OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS MADE as to the performance of an installation containing Pittsburgh Corning LLC products. In no event shall Pittsburgh Corning LLC be liable for any damages arising because of product failure, whether incidental, special, consequential or punitive, regardless of the theory of liability upon which any such damages are claimed. Pittsburgh Corning LLC provides written warranties for many of its products, and such warranties take precedence over the statements contained herein.